
Trace Abstraction Based on Automatic Detection of

Execution Phases

Akanksha Agarwal

A Thesis

In

The Department

Of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science at

Concordia University

Montreal, Quebec, Canada

December 2010

© Akanksha Agarwal, 2010

2

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Akanksha Agarwal

Entitled: Trace Abstraction Based on Automatic Detection of Execution Phases

and submitted in partial fulfillment of the requirements for the degree of

Master of Electrical and Computer Engineering

Complies with the regulations of the University and meets the accepted standards with respect
to originality and quality.

Signed by the final examining committee:

___ Chair

___ Examiner

___ Examiner

___ Supervisor

Approved by:

 __
 Chair of Department or Graduate Program Director

3

Abstract

Trace Abstraction Based on Automatic Detection of Execution Phases

Akanksha Agarwal

Understanding the behavioural aspects of a software system is an important activity in

many software engineering activities including program comprehension and reverse

engineering.

The behaviour of software is typically represented in the form of execution traces.

Traces, however, tend to be considerably large which makes analyzing their content a

complex task. There is a need for trace simplification techniques that can help software

engineers make sense of the content of a trace despite the trace being massive.

In this thesis, we present a novel approach that aims to simplify the analysis of a large

trace by detecting the execution phases that compose it. An example of a phase could be

an initialization phase, a specific computation, etc. Our algorithm processes a trace

generated from running the program under study and divides it into phases that can be

later used by software engineers to understand where and why a particular computation

appears. We also show the effectiveness of our approach through a case study.

4

Acknowledgment

I would like to thank all the people who have helped and inspired me during my entire

graduate study.

I am heartily thankful to my supervisor, Dr. Abdelwahab Hamou-Lhadj, for his

supervision, advice and guidance from the initial to the final level of understanding of the

subject during my research at Concordia University.

I owe my gratitude to Heidar (Amir) Pirzadeh for his crucial contribution which made

him a backbone of this research. I am grateful for his willingness to share his bright ideas

with me which helped me a lot in shaping up my research.

I am indebted to my friends and colleagues including Agam, Ali, Maher and Walid who

made themselves available to help me throughout by sparing their precious times for me,

offering advice and suggestions whenever I needed them and have always been a

constant source of encouragement in these two years.

Most importantly, none of this would have been possible without the love and patience of

my family. I would like to thank my family for their gentle love and support throughout

my life and for showing persistent confidence in me.

5

Table of Contents

Chapter 1 Introduction 9

1.1 Problem and Motivation 9

1.2 Research Contributions 11

1.3 Thesis Outline 12

Chapter 2 Background 15

2.1 Related Topics 15

2.1.1 Reverse Engineering 15

2.1.2 Program Comprehension 18

2.1.3 Static and Dynamic Analysis 19

2.2 A Survey of Existing Phase Location Techniques 21

Chapter 3 Execution Phase Detection Approach 25

3.1 What is an Execution Phase? 25

3.2 Overall Approach 27

3.2.1. Feature-Trace Generation 28

3.2.2. Phase Change Detection 29

3.2.3 Phase Shift Location 36

3.2.4 Determining the chunk size and the threshold 41

3.3 Summary 47

Chapter 4 Evaluation 49

4.1 Target Systems 49

6

4.2 Usage Scenario 50

4.3 Applying the Phase Detection Algorithm 51

4.4 Discussion 60

Chapter 5 Conclusion 62

5.1 Research Contributions 62

5.2 Opportunities for Further Research 63

5.3 Closing Remarks 64

Bibliography 65

7

List of Tables

Table Description Page

Table 3.1 Phase Change Detection Example 35

Table 3.2 Mid-rank value of the methods of Figure 3.4 37

Table 3.3 Phase shift location based on majority voting 41

Table 4.1 Phase_setsi,t and general similarity for all chunk sizes and thresholds 51

Table 4.2 Phase_sets and consecutive similarities for the JHotDraw trace 56

Table 4.3 Phase shift locations and corresponding routine calls 57

Table 4.4 Methods in JHotDraw source code and their responsibilities 60

8

List of Figures

Figure Description Page

Figure 2.1 Execution trace generation 21

Figure 3.1 Execution phases in a trace 26

Figure 3.2 Overall approach diagram 28

Figure 3.3 The pseudo code of phase finding algorithm 30

Figure 3.4 A sample routine (method) call trace 32

Figure 3.5 The rank of method A in each snapshot 38

Figure 3.6 The rank of method B in each snapshot 39

Figure 3.7 The rank of method C in each snapshot 40

Figure 3.8 The difference between general and consecutive similarity 46

Figure 4.1 Phase_Sets and corresponding general similarities for the JHotDraw trace 54

Figure 4.2 The execution phases in JHotDraw trace 58

9

Chapter 1 Introduction

1.1 Problem and Motivation

Understanding the behavioural aspects of a software system can help in many software

engineering activities such as debugging, adding new features to an existing system, or

simply understanding what the system does and why it does it this way. This is

particularly important for those systems with poor documentation and for which the

initial designers have left the company taking with them valuable knowledge about the

system.

The behaviour of software system is typically represented in the form of execution traces.

There exist several types of traces including traces of routine (method) calls, traces of

inter-process communications, statement traces, etc. In fact, one can trace any aspect of

the system depending on the task at hand. Traces, however, have historically been

difficult to work with. The challenge is that they tend to be extremely large, often

hundreds of thousands lines. There is a need for techniques to simplify the content of

large traces to facilitate their analysis. Recently, there has been a noticeable increase in

the number of studies in the area of trace abstraction and simplification [Moonen 08,

Hamou-Lhadj 05, De Pauw 98, Jerding 97, Renieris 99, Malony 91, Jerding 98]. These

10

techniques, however, suffer from several limitations including the fact that they rely

extensively on user input and that most of these techniques rely on some sort of

visualization scheme, which limit their reuse [Hamou-Lhadj 04].

The objective of the study presented in this thesis is to develop techniques to facilitate the

analysis of large execution traces in order to help software engineers understand the main

behaviour of the traced program, which in turn can enable software engineering tasks that

require some understanding of the system behavioural aspects. For example, a software

engineer who wishes to improve an existing feature of a poorly documented system will

most likely need to understand how the feature is implemented before making any

changes that preserves the system’s reliability. He or she can then generate a trace by

exercising this feature and proceed to understanding and analyzing its content to build an

initial understanding of how the feature is implemented. This understanding aims to

compensate for a lack of proper documentation and access to system experts.

In this thesis, we propose a novel approach to simplify the analysis of large traces by

automatically extracting the main execution phases they contain. We define an execution

phase as any part of a trace that performs a specification task including initialization of

variables, specifications computations, etc. By doing this, we transform the trace from a

mere raw of events to a more meaningful sequence of phases that can be readily explored

by a software engineer to understand different parts that comprise a trace at a higher-level

of abstraction.

11

Our algorithm for the automatic detection of execution phases is based on the fact that a

phase shift within a trace appears when a certain set of events responsible for

implementing a particular task and which are prevalent in one phase, start to “fade” as the

program enters a new phase, where new events start to appear. In addition to this, our

phase detection technique operates on the trace while it is generated (i.e., online). This is

contrasted with the post-mortem analysis of a trace and which requires the trace be first

generated in its entirety before any processing is applied. This offline approach has the

obvious shortcoming of having to store the entire trace although it may only be necessary

to explore part of it. Our phase detection approach is also automatic to a great extent

relieving users from heavy intervention that is not desirable when working with traces.

The traces on which we focus on in this thesis are traces of routine calls. By routine, we

mean a procedure, function, or method. Our approach applies to procedural and object-

oriented systems and it is language-independent as long as the programming language

used to develop the system support the concepts of routines.

 1.2 Research Contributions

The main research contributions of this thesis are as follows:

 A novel trace abstraction technique based on the idea of dividing a large trace into

meaningful segments, called execution phases, which reflect the main tasks of the

12

traced program. Our approach is automatic and operates on the trace as it is

generated.

 A novel algorithm for extracting execution phases from a trace. The algorithm is

based on the idea that trace elements fade as new phases emerge.

 The phase detection algorithm has been applied to the execution traces generated

from an object-oriented target software system in order to show the applicability

of our approach.

1.3 Thesis Outline

The rest of the thesis is structured as follows:

Chapter 2 - Background

The thesis begins with the background literature review, including a brief overview of the

topics that are related to our research, namely, reverse engineering, program

comprehension, static and dynamic analysis. The remainder of this chapter contains a

detailed survey of the existing execution phase detection techniques, including their

advantages and disadvantages, which are followed by a general discussion in the end.

13

Chapter 3 – Phase Detection Approach

The phase detection algorithm is presented in this chapter. The chapter starts with the

definition of execution phases followed by the overall approach which includes the

approach diagram featuring the steps of our phase detection algorithm. The chapter

continues with the detailed description of the feature-trace generation process and the two

steps that constitute our approach, i.e. phase change detection and phase shift location.

Next, we present a working example which shows how the algorithm is applied to detect

the execution phases in a sample trace. The last section of this chapter concludes with a

discussion on the applicability of our approach on real data.

Chapter 4 - Evaluation

This chapter introduces a case study which is used to evaluate the execution phase

detection approach presented in the previous chapter. In the beginning of this chapter, the

target system that is chosen for the case study is described which is followed by a

discussion on the usage scenario based on which the trace has been generated. The

quantitative and the qualitative results of applying our phase detection algorithm and the

evaluation process are discussed in details. The chapter ends with a brief discussion of

the approach.

14

Chapter 5 - Conclusions

We conclude the thesis in this chapter by revisiting the main research contributions. We

also present opportunities for future research. The closing remarks are presented at the

end of the chapter.

15

Chapter 2 Background

2.1 Related Topics

The topics related to our thesis include reverse engineering, program comprehension,

static analysis and dynamic analysis.

2.1.1 Reverse Engineering

Reverse engineering is concerned with investigating techniques and tools to help

software engineers understand the complex legacy software systems [Nelson 96]. Unlike

forward engineering, which involves the advancement from one step to another in the

software development life cycle, the process of reverse engineering is to go in a reverse

direction, starting from the implementation phase to gathering the requirements and

hence trying to get the structural and behavioral aspects of existing software systems by

building several static and dynamic abstract models [Nelson 96]. Reverse engineering can

be achieved by gathering all the software components, identifying their inter-

relationships, and presenting these entities at higher levels of abstraction. There are

particularly four types of reverse engineering processes [Nelson 96]. They include:

16

1. Re-documentation: Re-documentation is the simplest and the oldest form of reverse

engineering. Several legacy systems are very poorly documented and understanding

their artefacts such as source code and the other information is a difficult task. Hence

re-documentation came into existence. It is the process of transforming the old code,

documents related to the code and the programmer’s knowledge into a new or

updated form of documentation which can be textual or graphical [Nelson 96]. This

form of reverse engineering is responsible for correction of system documentation at

the same level of abstraction. Re-documentation is an important activity as the

software engineers need to refer to the program documentation to understand what the

code is doing and why it is doing it this way.

2. Design Rediscovery: The main purpose of this form of reverse engineering is to re-

design a model of the system at a higher level of abstraction using the same domain

knowledge and documentation, along with the source code.

3. Restructuring: It involves the transformation of a system to another representation at

the same level of abstraction, rather than abstracting it to a higher-level, while

preserving its functionality and behaviour. Restructuring improves the quality

attributes of the software products by re-organizing the logical structure of existing

software systems [Arnold 89]. For example, the GOTO statements which were

heavily used in the older software of Cobol or Fortran are now being replaced with

their modern equivalents such as loops and conditional statements. The other

17

examples include editing documentation, rearranging the code by renaming variables,

abstracting functions etc. These changes greatly improve the readability of software

programs.

4. Reengineering: Reengineering of a software system was described by Chikofsky and

Cross as “the process of analyzing a subject system to identify the system’s

components and their interrelationships and create representations of the system in

another form or at a higher level of abstraction” [Chikofsky 90]. While reverse

engineering advances from the low-level program code to a higher-level of

abstraction, reengineering makes use of the increased understanding to re-implement

the code in a new form [Rugaber 95]. Hence, reengineering can be defined as a

process of modifying the software system by adding a new functionality to it or by

rectifying the existing errors after the system has been reverse engineered.

We believe that the approach presented in this thesis can help with many of the above

reverse engineering and reengineering tasks. For example, the extracted phases from a

large trace can be further refine to recover the behavioural design diagram of the traced

scenarios, which in turn can serve many purposes including documenting the design,

helping in restructuration efforts and so on.

18

2.1.2 Program Comprehension

According to Rugaber, program comprehension is the process of acquiring knowledge

about a computer program in order to perform certain activities on it such as error

correction, reuse, system enhancement and documentation [Rugaber 95]. Biggerstaff et

al. define program comprehension as “A person understands a program when he or she is

able to explain the program, its structure, its behaviour, its effects on its operation

context, and its relationships to its application domain in terms that are qualitatively

different from the tokens used to construct the source code of the program” [Biggerstaff

93].

It is a research area which led to the development of several revere engineering tools and

techniques to help software engineers understand legacy software systems. It is very

much required to understand the software sufficiently before it can be modified because

maintaining the systems totally depends on understanding the structure of the program.

The main problems that the programmers face today are the difficulties in understanding

existing code, due to its unfamiliarity and the lack of proper documentation. A large part

of the software maintenance process is devoted to comprehend the system that has to be

maintained. Fjeldstad and Hamlen reported that 62% of the time and effort spent on

understanding, enhancement and correction tasks are devoted to comprehension

activities. These activities involve reading the documentation, scanning the source code,

and understanding the modifications to be made [Fjeldstad 83]. It is therefore very crucial

for programmers to have a deep insight of the software they have to modify in order to

19

maintain it. In short, the better programmers understand the software system at hand, the

better will be the maintenance process, and hence, software development will be

improved.

One of the main objectives of this thesis is to assist software engineers in the program

comprehension process with a focus on the understanding of how the system behaves,

instead of what the system looks like. We achieve this by allowing them to map the

execution phases detected by our program to the specific code that implement the

features corresponding to those execution phases.

2.1.3 Static and Dynamic Analysis

Static analysis of software systems is performed without actually executing the program.

The static information obtained by the static analysis of software systems describes the

structure of the software and reveals the properties that hold for all possible system

executions. This information is extracted by analyzing the source code and can be viewed

using several reverse engineering tools like Rigi [Müller 88]. This static information is

composed of the artefacts contained in the program and the relationship between them.

For example, in the case of Java, these artefacts could be packages, classes, methods,

variables etc. Based on the dependencies between these artefacts, static dependency

graphs are constructed which can further be employed for various studies.

20

Dynamic analysis of the software programs (the focus of this thesis) is performed by

actually executing the program to understand the run-time behaviour of the software

system. Another definition of dynamic analysis is presented by Ball: “dynamic analysis is

the analysis of the properties of a running software system” [Ball 99]. The major

difference between static and dynamic analysis is that in static analysis the system

properties hold true for all the executions whereas in dynamic analysis the properties for

each execution hold only for the executed scenarios.

As we mentioned in the introductory section, the information that is generated from

executing a software system takes generally the form of execution traces. Other run-time

information such as system profiles are another form but they are most used to analyze

the system performance and are, therefore, outside the scope of this thesis. Traces contain

a record of the events that take place while the program is executed. For example, the

routine (method) call traces constitute a trail of methods where each method is called by

another in a sequential fashion. Depending upon how the probe is written, a variety of

information can be obtained in a trace, apart from just acquiring the names of the

methods, such as the nesting level of methods, the nature of each method whether it is

public, private or protected, etc. In this thesis, we focus on traces of method (routine)

calls, leaving other types of traces for future research.

The run-time information can be generated in different ways including source code

instrumentation (done automatically), which requires modification of the target system.

Instrumenting of the execution environment is another possible alternative, which neither

21

requires the modification of source code nor the presence of code itself. Figure 2.1 shows

a typical way on how traces are generated.

Target Software System

Instrumentation Execution

Scenario

Execution

Trace

Figure 2.1 Execution trace generation

2.2 A Survey of Existing Phase Location Techniques

In this section, we present a survey of the most cited execution phase detection tools and

techniques. Although we did not attempt to examine and include all the studies that exist

in the previous literature, however, we believe that the ones presented in this section

reflect the current state of art in phase detection approach.

Steven P. Reiss [Reiss 05] introduced the concept of dynamic detection and visualization

of software phases. He created a software visualization tool called as JIVE which helps

22

software engineers understand the behaviour of a software system by providing them a

high level view of what actually is happening inside the target Java system. The main

task of JIVE is to summarize the information of execution after a certain period of time,

for example, in the interval of 10 milliseconds. This execution information is comprised

of the numbers of calls made by methods of one class or a group of classes, the

information about objects being allocated and destroyed and the information about the

behaviour of the threads occurring in different parts of execution. There exists a

similarity between their technique and our approach which is that both approaches work

dynamically, i.e. the phases are determined while the program is being executed.

However, one of the drawbacks of determining the phases through their technique is that

the generation of the phases is greatly defined by the programmer, whereas our method is

almost fully automatic.

In [Watanabe 08], Watanabe et al. proposed a novel technique to detect phases in the

execution traces of large object-oriented software programs by using a Least Recently

Used (LRU) Cache for observing the objects which are prepared at the beginning of the

phase and are destroyed with the end of the phase. They define a phase as a consecutive

sequence of run-time events where some phase can correspond to a feature and the other

phase may represent a minor phase. Their approach is somewhat similar to our phase

detection technique in a way that they frequently update the LRU cache when the objects

responsible for a new phase are assembled. To achieve the visualization, they integrated

their approach to a sequence diagram visualization tool called Amida which

23

automatically detects the phases and visualizes them in the form of sequence diagrams.

Dealing with object creation and deletion, however, poses serious challenges to the

scalability of the approach. In this thesis, we focus on method call traces. We also present

a different algorithm than the one presented by Wanabe et al.

In [Cornelissen 08], the authors were concerned with developing techniques that allow

the visualization of data which is gathered at run-time from a software system in a

summarized way, while still maintaining the integrity and readability of data. In order to

achieve this, they presented two views of a software system: circular bundle view and the

massive sequence view. In the former view, all the structural elements which comprise a

software system are projected on the circumference (outline) of a circle in a nested

fashion and are then viewed while their inter-relationships are drawn in the middle of the

circular bundle. These relationships are then bundled together to avoid visual clutter and

hence improve scalability. If the edges in a certain portion of the circumference are

thicker, it indicates that most of the activities are centered around these calls. Another

view that is described by the authors is the message sequence view, also named as

message sequence charts in which the entities of a software system are arranged in an

orderly fashion. This view greatly supports the readability by displaying all the

information in a vertical manner. But on the other hand, if there is an extremely large

amount of information, then this type of arrangement creates a problem in navigation.

The massive sequence view indicates that there are three major “phases” in the execution

scenario. They are the input phase, calculation phase and an output phase. The authors

24

have used several zoom-in and zoom-out techniques to visualize the circular bundles. The

difference between their technique and ours is that they focus on the visualization tools

and techniques to give a representation of execution phases, whereas, our technique

automatically detects and locates the phases in an execution trace no matter which

visualization technique is used.

25

Chapter 3 Execution Phase Detection Approach

In this chapter, we present our approach for detecting and locating the various execution

phases that constitute an execution trace. The rest of the chapter is organised as follows:

In Section 3.1, we define in more detail what we mean by execution phases. The overall

approach of detecting phases in large traces including the process of generating traces,

detecting phase changes, and locating where the phase shift occur is presented in Section

3.2 which is followed by a brief summary of the chapter in the last Section 3.3.

3.1 What is an Execution Phase?

We define an execution phase as a segment of a trace that performs a particular

computation such as initializing variables, executing a specific algorithm, and so on.

Wantanabe et al. describe a phase as a feature that represents the functionality of a

program at higher levels of abstraction [Watanabe 08]. They also state that it is suitable to

divide a large execution trace into smaller execution phases before performing any

further processing of the trace content. This can assist software developers in

understanding the content of a trace by focusing on smaller segments (i.e., its execution

phases) instead of going through the entire trace.

26

Initialization Phase

Computational Phase

Finalization Phase

Execution

Trace

Method

call

counter

Figure 3.1 Execution phases in a trace

At a high-level, a program run may involve three main phases (Figure 3.1): Initialization

phase, main computation, and a finalization phase. These phases can be further divided

into sub phases revealing more details about what the program is doing. Our objective, in

this thesis, is to propose an algorithm that takes a method call trace as input and

automatically extracts its main execution phases at various levels of abstraction. The idea

behind our phase detection approach, which is described in more detail later, is to detect

when and where during the execution of a program, execution phases appear. Since a

phase implements a particular computation, it is therefore reasonable to assume that it has

some components that distinguish it from the other phases. In other words, while

browsing a trace, the methods that implement a particular phase start to “fade” as new

methods begin to emerge, indicating the beginning of another phase.

27

In addition, our proposed phase detection algorithm operates on a trace while it is

generated (i.e., on the fly). This is contrasted with an offline approach, where the entire

trace is first collected before applying the algorithm. Online processing of traces is

usually more desirable than an offline approach since the users can see the results early

and may need to make decisions based on this early feedback without having to wait until

the entire trace is generated.

3.2 Overall Approach

Figure 3.2 shows a general overview of our approach for detecting and locating the

execution phases in a trace. First, the system is instrumented and a trace is generated by

exercising the scenario under analysis. The two fundamental steps of our phase detection

algorithm are: Phase Change Detection and Phase Shift Location. The objective of the

phase change detection is to estimate whether the methods which are prevalent in one

phase have begun to disappear as new ones have started to appear.

Once a phase change is detected, the phase shift location step consists of detecting the

exact location of the phase transition. It is desirable to know the exact location of a phase

shift in the trace in order to distinguish the different phases from one another. This is

obtained by detecting where exactly the methods belonging to one phase have started to

effectively fade or completely disappear leaving their place to new methods belonging,

presumably, to the next phase. The components of our approach are explained in more

detail in the subsequent sections.

28

Target Software

System

Instrumented

Source Code

Execution

Scenario

Feature-Trace

Generation

Phase Change

Detection

Phase Change is

not Detected

Phase Shift

Location

Phase Change

is Detected

Phase Detection

and Location

Run Time

Information

(Execution

Trace)

Figure 3.2 Overall approach diagram

3.2.1. Feature-Trace Generation

The first step of our approach is to generate a suitable feature-trace which is obtained by

exercising an execution scenario that involves the execution of several essential features

under study. For example, for a drawing tool such as the JHotDraw software system (the

29

system used for the case study), the features may include laying the foundation of a

drawing, drawing a figure thereafter which could be followed by inserting more figures

and animations, modifying these figures, deleting them etc. We have used source code

instrumentation to generate traces because of its simplicity and the availability of tool

support.

3.2.2. Phase Change Detection

The phase change detection step aims to detect a shift from one set of frequently

appearing methods to another set of newly introduced methods. As the program executes,

a set of distinct methods are captured in a set which is called a working set (WS). The

prevalence of the methods in a working set is computed based on the order in which they

are invoked and then they are arranged in a descending sequence of their prevalence.

That means, the methods with high prevalence value appear at the beginning of the

working set whereas the less frequent methods come in the end. The way the prevalence

is computed is presented later in this chapter.

As new methods appear in the execution of the program, the working set is constantly

updated so that it can reflect the changes in the program’s behaviour. However, updating

the working set on each new method invocation can be relatively expensive in terms of

computations. To alleviate this, we propose updating the working after a certain number

of method calls occur. We call this the chunk of method calls. Therefore, the update rate

of the working set depends on the chunk size which is provided as an input to the phase

30

change detection program (depicted in Figure 3.3). This chunk size is a variable which

can be set to different values by the user.

1 PhaseFinder(Chunki: chunk of methods, T:threshold)

2 {

3 if (i == 1) // If it is the first chunk of the trace

4 WS = new workingset()

5 for each method m in Chunki

6 {

7 if m is not in WS

8 {

9 WS.add(m)

10 }

11 WS.rank_methods() // using the methods prevalence

12 }

13 Snapshoti = WS

14 if (i == 1) //Snapshot0 is created when the first chunk is processed

15 Snapshoto = Snapshoti

16 Distance = compare (Snapshoto, Snapshoti)

17 if (Distance < T)

18 {

19 for each candidate m // This part is used for phase shift location

20 {

21 for every chunk in {Snapshoto ... Snapshoti}

22 if m.rank(chunk) is close to mid-rank

23 chunk.vote()

24 return (chunk with maximum votes)

25 }

26 Snapshoto = Snapshoti

27 }

28 }

Figure 3.3 The pseudo code of phase finding algorithm

In order to detect a phase change, the methods of the current snapshot of a working set

are compared with the methods contained in the original snapshot of working set (lines

16-18 of the algorithm). If less than a certain threshold, T, of the methods of the original

31

working set appear in the current working set, then this suggests that a phase change has

taken place since this means that new methods are now becoming more prevalent than the

ones already in the working set. Determining the threshold T in advance is not possible

since it might depend on the application. It is given in our algorithm as input. In practice,

the tool that supports our approach should be able to allow enough flexibility to vary the

threshold T. In Section 3.3 of this thesis, we propose a technique for determining proper

threshold T and the chunk size that would lead to an adequate set of phases.

Another decision we made in our algorithm is concerned with the ways working sets are

compared. Instead of comparing all the methods of the current working set, one possible

optimization is to compare only a few of them which have the highest ranking (i.e. the

ones that appear in the beginning of the working set). The number of methods that are to

be compared can be equal to the chunk size since, in the worst case scenario, the number

of new distinct methods that can be found in a new chunk will always be less than or

equal to the chunk size.

Figure 3.4 shows an example of a routine call sample trace that will be used to illustrate

the algorithm. Considering that the chunk size is set to 3, the original working set WS

will contain the first 3 methods A, B and C of the trace. These methods are sorted in a

descending order based on their ranking (prevalence).

32

Figure 3.4 A sample routine (method) call trace

33

The prevalence function takes into account the frequency of a method in part of the trace

that has been processed so far (frequency(m)), the first chunk number in which the

method was first introduced (first_chunk(m)), the current chunk number under process

(curr_chunk) and the chunk size (chunk_size). The complete equation is as follows:

sizechunkmchunkfirstchunkcurrent

mfrequency
mP

_*)1)(__(

)(
)(

This equation keeps track of the prevalence of all the methods as the algorithm advances

through the chunks of the trace. If a set of methods keep appearing relatively at the

similar rate after each chunk is processed, then this is a good indicator that the program is

still in the same phase. If some of the methods start fading based on a certain threshold

percentage, then this is an indication of the beginning of a new phase.

When applying the prevalence function to the methods of Chunk 1 in the trace of Figure

3.4 we obtain P(A) = 1/{(1-1)+1}*3 = 1/3. Likewise, the prevalence of methods B and C

is also 1/3. This is so because all the three methods A, B and C appear only once in the

first chunk. Since the prevalence of each method in Chunk 1 is the same, therefore, they

all are assigned the same rank 1. The working set that is obtained after processing the

first chunk of the trace is {A, B, C}. The content of the first working set is acknowledged

as the original working set and it is updated with the processing of the following chunks

of methods while the trace is being generated, therefore giving rise to different snapshots

of the original working set.

34

As the algorithm processes the upcoming chunks, it updates the working set by adding

the newly encountered methods, computes their prevalence and assigns them a ranking

based on the corresponding prevalence. For instance, the Chunk 2 of the trace in Figure

3.4 contains methods C, D and B. On recomputing the prevalence of all the methods and

updating the working set, we obtain:

P (A) = 1 / {(2-1) + 1}*3 = 1/6.

P (B) = 2 / {(2-1) + 1}*3 = 2/6 = 1/3.

P (C) = 2 / {(2-1) + 1}*3 = 2/6 = 1/3.

P (D) = 1 / {(2-2) + 1}*3 = 1/3.

The first update of the working set is {B, C, D, A}. It shows that the method A, which

appeared at the first position in the previous (original) working set, now occupies the last

position which indicates that it has gradually started to fade, whereas, methods B and C

still have some strength. Each time we update the working set, we compare it with the

original snapshot of working set and if there is a significant change between the original

working set and the current one, then this indicates the beginning of a new phase.

Assuming that the threshold T is set to 20% in this example, the methods B and C in

original working set {A, B, C} do appear at the beginning of the current snapshot of

working set {B, C, D, A}. That means, a phase change has not been detected so far.

Hence, the process of updating the snapshots of working sets continued until less than

20% of the methods in original working set appear in the current snapshot of the working

set.

35

Table 3.1 Phase Change Detection Example

Chunk

no.
Working set name

Methods

introduced in

chunk

Snapshots

Phase

Shift

Detected

1
Original working set

(Snapshot 1)
A, B, C {A, B, C}

2 Snapshot 2 D {B, C, D, A}

3 Snapshot 3 H {C, H, A, B, D}

4 Snapshot 4
No new

methods
{C, A, B, H, D}

5 Snapshot 5 M {M, B, C, H, A, D}

6 Snapshot 6 N, L {N, L, B, C, M, H, A, D}

7 Snapshot 7
No new

methods
{N, B, H, C, L, A, M, D}

8
Current working set

(Snapshot 8)
P {N, P, L, B, H, C, M, A, D}

Table 3.1 shows the snapshots of the working sets that correspond to each chunk. With a

threshold set to 20%, a new phase will be detected, in this example, after the Chunk 8 is

processed. This is so because none of the methods of the original working set appear in

36

the first 3 methods of the current working set (snapshot 8). Hence, Chunk 8 is a point of

phase detection.

3.2.3 Phase Shift Location

Once we detect that there is a phase in the trace, it is now required to determine the exact

location of phase transition. In order to achieve this, the distinct methods appearing in all

the working sets, starting from the original working set to the one in which the phase is

detected, are grouped together in what we call the Observation Set. The observation set

resulting from the previous example is: {A, B, C, D, H, M, N, L, P} since these are the

methods that appear in the working set where the phase has been detected.

The next step is to find the exact chunk in the trace where most of these methods start to

fade. If we consider the fading of a method m as it is going from its best rank (somewhere

in one phase) to its worst rank (somewhere in another phase), then we presume that the

starting point where the ranking of the method m starts to decline should be somewhere

in the middle. We call this point the mid-rank point which we compute as follows:

2

)()(
)(

mkhighestranmlowestrank
mmidrank

The lowest and highest ranks represent the worst and best ranks of a method m in any

working set where the method appears. Table 3.2 shows a list of methods in the

observation set and their mid-rank points. For example, a method A has the lowest rank

37

in Chunk 8 and the highest rank in Chunk 1. Therefore, its mid-rank point is 4.5 (i.e.

(8+1)/2). Now we have to find the chunks in which the rank of method A is closest to its

mid-rank. It can be observed that the ranking of A is close to 4.5 in Chunk 2, Chunk 5 and

Chunk 6 (see Figure 3.5). For each method in the observation set, we list the chunks in

which the method reaches its mid-rank point (as shown in Table 3.2).

Table 3.2 Mid-rank value of the methods of Figure 3.4

Method call Mid-rank
Chunks where the rank of the method is close to the

mid-rank value

A 4.5 Chunk2, Chunk5, Chunk6

B 2.5 Chunk3, Chunk4, Chunk5, Chunk6, Chunk7

C 3 Chunk5, Chunk6, Chunk7

D 6 Chunk3, Chunk4

H 4 Chunk7

M 5 Chunk6, Chunk8

N 1 Chunk6, Chunk7, Chunk8

L 3 Chunk8

38

P 1 Chunk8

We refer to the chunks in which a method m reaches its mid-rank point as the voting

chunk set of this method. This set indicates the possible places where the method might

start fading. For example, the voting chunk set of method C is {Chunk 5, Chunk 6,

Chunk 7}. That means, C could have started to disappear in any of these chunks (see

Figure 3.7). Similarly, the voting chunk set of methods A and B are {Chunk 2, Chunk 5,

Chunk 6} and {Chunk 3, Chunk 4, Chunk 5, Chunk 6, Chunk 7} and are shown in Figure

3.5 and Figure 3.6.

Figure 3.5 The rank of method A in each snapshot

Ranks of A = (chunk1: 1, chunk2: 4, chunk3: 3, chunk4: 2, chunk5: 5, chunk6: 5,

chunk7: 6, chunk8: 8) mid-rank(A) = 4.5.

39

Figure 3.6 The rank of method B in each snapshot

Ranks of B = (chunk1:1, chunk2: 1, chunk3: 3, chunk4: 2, chunk5: 2, chunk6: 3,

chunk7: 2, chunk8: 4) mid-rank(B)= 2.5

In order to find the phase transition, we simply need to compute the voting chunk set of

all the methods in the observation set and locate the chunk that receives the highest vote

(Lines 17 to 26 of the algorithm described in Figure 3.3). This is the chunk in which most

methods of a phase have started to fade and therefore, this chunk will be considered as

the location of phase transition.

40

Figure 3.7 The rank of method C in each snapshot

Ranks of C = (chunk1:1, chunk2: 1, chunk3: 1, chunk4: 1, chunk5: 2, chunk6: 4,

chunk7: 4, chunk8: 5) mid-rank(C)= 3

The results of the chunk voting for the sample trace in Figure 3.4 are shown in Table 3.3.

The chunk that obtained the maximum votes is Chunk 6, which indicates that the phase

transition has taken place in this chunk. If we look at the trace of Figure 3.4, we can see

that starting from Chunk 6, most of the methods like A, B and C have started to appear

less frequently whereas the new methods like H, M and N have started to emerge,

therefore invoking a new phase. Hence, the overall approach detects the phase at Chunk 8

and locates the phase transition at Chunk 6.

41

Table 3.3 Phase shift location based on majority voting

Chunk no. Votes Phase Shift

Chunk1 0

Chunk2 1

Chunk3 2

Chunk4 2

Chunk5 3

Chunk6 5

Chunk7 4

Chunk8 4

3.2.4 Determining the chunk size and the threshold

As aforementioned, our approach depends greatly on the chuck size and the threshold T

used to compare the content of the working sets. By varying these two variables, one may

end up with different phases. The question is therefore: What would be the most suitable

chunk size and threshold T for the application at hand?

To answer this question, we propose to vary the chuck size and the threshold T as

follows:

42

 We vary the chunk size from 1 to the number of distinct methods invoked in the

trace. This is the maximum number of methods that can form a chunk size when

removing all repetitions.

 We vary the threshold T from 0% to 100%. This will cover all possible thresholds.

For each value of the chunk size and the threshold T, we extract the phases that have been

identified. We refer to phase_seti,t as a set of phases that have been uncovered with a

chunk size equals to i and a threshold T equals t. Once all possible phase sets are

identified (this is done automatically by simply applying the phase detection algorithm

presented earlier), we measure the similarity between the phases contained in each set. A

good phase set should be the one where the phases are most distinct from each other. This

is based on the definition of an execution phase where an execution phase should

represent a particular computation of the traced scenario. Therefore, the extracted phases

should be as dissimilar as possible. We acknowledge that they will always contain some

common components such as utilities, but there should also be components that are only

proper to each phase. A better approach might require automatic removal of utilities

using techniques such as the ones presented by Hamou-Lhadj et al. [Hamou-Lhadj 06].

To measure similarity between phases, we propose the concept of general similarity

estimation (GSim) which is obtained by computing the average of the similarities

between all the individual phases. We have developed a similarity metric which measures

43

the commonality between two phases based on the distinct methods they have. Our

general similarity estimation is computed as follows:

1. We first measure the similarity between every pair of phases in phase_seti,t

2. The general similarity is then the average of the similarities measure in (1)

To measure the similarity between every pair of phases, we simply divide the number of

distinct methods that are common between the two phases to the total number of distinct

methods contained in both the phases. For instance, consider that the number of phases

that is detected in a trace is three P1, P2, and P3. We also refer to number of distinct

methods contained in a phase as DM (Phase), then the general similarity of these phases

is computed as follows:

Sim12 =

Sim13 =

Sim23 =

GSim =

44

In the above equations, DM(P1) and DM(P2) are the number of distinct methods

contained in Phases 1 and phase 2 respectively. Therefore, Sim12 is the fraction of number

of distinct methods present in Phases 1 and 2 over the total number of distinct methods

that are contained in both the phases. Likewise, the similarities between Phase 1 and

Phase 3, Phase 2 and Phase 3 are also computed. Once we have the individual similarities

between all the three phases, the next step is to calculate the general similarity which is

basically the average of all the previously computed individual similarities.

The lower percentage of general similarity indicates that the individual similarities

between the phases are quite low as they have a few methods in common and hence they

are more distinct to each other.

A more generalised formula of the general similarity is shown as follows:

GSim =

Where,

Sim12 =

Sim23 =

45

Once the general similarity is computed for all possible phase sets (by varying the chunk

size and the threshold T), we need to select the phase set with the minimum general

similarity (meaning that most phases are distinct from each other). However, the issue is

that there may be many phase sets that have low similarity. To select the best possible

phase set, we apply another similarity metric to measure the changes that appear as one

goes from one phase to another. In other words, we need to look into how continuous

phases vary. We call this the measure of consecutive similarity.

The difference between general similarity and consecutive similarity is illustrated in

Figure 3.8.

46

(a) General Similarity (b) Consecutive Similarity

Figure 3.8 The difference between general and consecutive similarity

To measure the consecutive similarity in the set phase_seti,t, we simply compute the

summation of similarities (between the consecutive phases and compute the

average (). The phase_seti,t with the lowest average value is the one that indicates

that the detected phases are highly disassociated from each other.

The equations for computing the consecutive similarity are shown in what follows:

The brackets between

phases represent

similarity comparison

between them

Phase 1

Phase 2

Phase 3

.

.

.

Phase N

Phase 1

Phase 2

Phase 3

.

.

.

Phase N

47

The lowest value of the consecutive similarity indicates the best phase set (including the

chunk size and threshold T). The next step of our process is to validate the phases by

looking at the traced scenario and how the phases reflect various computations. We show

the effectiveness of the approach in Chapter 4.

3.3 Summary

In this chapter, we presented our approach of detecting and locating the execution phases

that constitute a trace. The objective is to simplify the analysis of large execution traces.

The approach is primarily composed of two consequent steps: Phase change detection

and phase shift location. The main purpose of phase change detection is to determine if

the methods implementing a particular phase which appear frequently have started to

disappear with the invocation of newly introduced methods, indicating the beginning of

another phase. Once a phase change is detected we locate where exactly in the trace the

more frequent methods, that constitute one phase, start to fade, using the phase shift

location.

48

After locating all the phases in an execution trace, we introduced a concept of general and

consecutive similarities to estimate the best combination of chunk size and threshold that

can produce adequate phases.

49

Chapter 4 Evaluation

In this chapter, we present a case study to evaluate the applicability and effectiveness of

our phase detection approach by applying it to a trace generated from the execution of an

object-oriented software system.

This chapter is organized as follows: the next section describes the target system that will

be instrumented for the trace generation process. In Section 4.2, we present the usage

scenario chosen to generate the execution trace. In Section 4.3, we show the evaluation

process of applying our phase detection algorithm on the execution trace. The

quantitative and the qualitative results of this case study are presented in the subsections

of Section 4.3. A summary of our findings is presented in Section 4.4.

4.1 Target Systems

We have applied the proposed phase detection algorithm to a trace generated from a

software system called JHotDraw (version 5.2). JHotDraw is open source software and a

well known Graphical User Interface framework implemented in Java for technical and

structural graphics [JHotDraw 5.2]. It consists of 9 packages, 148 classes and 1963

methods. JHotDraw 5.2 has 17,819 lines of code.

50

We selected the JHotDraw software system because it is well documented. JHotDraw

packages and classes are documented and the detailed description of the architecture can

be found on a website dedicated to the tool [JHotDraw 5.2]. The availability of this

documentation helped validate the results obtained by using our approach.

4.2 Usage Scenario

In order to generate the execution traces, the target software system JHotDraw was

instrumented using an Eclipse plug-in called TPTP (the Eclipse Test and Performance

Tool Platform Project). TPTP is an open source platform which allows the software

developers to build test and performance tools. The detailed description of this tool can

be found on the website and the entire information of the plug-in and its download is

provided on [Eclipse TPTP]. To instrument the system, the probes were inserted at each

method entry and method exit of the source code. The scenario we selected to exercise

JHotDraw consisted of a variety of drawing and animation features. The execution trace

obtained as a result of executing the above scenario contained approximately 43962

routine calls (since we needed two events to generate a routine call, the trace size in terms

of events was 87924 events). However, this trace contained a lot of noise such as mouse

movements, get and set methods etc. For more precise results, we filtered these utilities to

obtain a trace which was much cleaner. The resulting trace after removing noise consisted

of 16261 routine calls.

51

4.3 Applying the Phase Detection Algorithm

In the JHotDraw execution trace which is chosen for our case study, the total number of

distinct methods was 370. So we varied the chunk size from 1 to 370 with an interval of

10 and the threshold T was varied from 0% to 100% again with an interval of 10%. In

order to detect a phase change, the methods in the current snapshot of working set were

compared with the methods contained in the original snapshot of the working set. If less

than a certain threshold of the methods of the original working set appeared in the current

working set, then this suggests that a phase change had taken place as described in the

previous chapter. Table 4.1 shows the results of applying the phase detection algorithm

by varying the chunk size and the threshold T. The rows represent the chunk size and the

columns represent the threshold. The cells contain the number of phased that have been

detected and the result of the general similarity. For example, when the chunk size is 10

and the threshold T = 10%, we obtain 805 phases (meaning that phase_set10,10 contains

805 phases) and a general similarity of 24%.

Table 4.1 Phase_setsi,t and general similarity for all chunk sizes and thresholds

T/

Chunk

Size

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

10 805

(24%)

813

(23%)

814

(23%)

814

(23%)

814

(23%)

814

(23%)

814

(23%)

814

(23%)

814

(23%)

814

(23%)

20 359

(45%)

404

(41%)

405

(41%)

407

(41%)

407

(41%)

407

(41%)

407

(41%)

407

(41%)

407

(41%)

407

(41%)

30 265

(65%)

268

(64%)

270

(62%)

271

(62%)

271

(62%)

272

(62%)

272

(62%)

272

(62%)

272

(62%)

272

(62%)

40 16

(24%)

197

(86%)

202

(82%)

203

(81%)

203

(81%)

204

(81%)

204

(81%)

204

(81%)

204

(81%)

204

(81%)

50 9

(26%)

159

(85%)

161

(83%)

162

(82%)

162

(82%)

162

(82%)

163

(81%)

163

(81%)

163

(81%)

163

(81%)

52

60 3

(17%)

132

(86%)

134

(84%)

135

(83%)

135

(83%)

135

(83%)

136

(82%)

136

(82%)

136

(82%)

136

(82%)

70 2

(17%)

12

(28%)

114

(85%)

116

(82%)

116

(82%)

116

(82%)

116

(82%)

117

(81%)

117

(81%)

117

(81%)

80 2

(16%)

9

(25%)

100

(84%)

101

(83%)

102

(82%)

102

(82%)

102

(82%)

102

(81%)

102

(81%)

102

(81%)

90 2

(16%)

5

(22%)

90

(83%)

90

(83%)

90

(82%)

90

(82%)

90

(82%)

91

(81%)

91

(81%)

91

(81%)

100 2

(16%)

4

(25%)

9

(26%)

81

(82%)

81

(82%)

81

(82%)

81

(82%)

82

(80%)

82

(80%)

82

(80%)

110 2

(16%)

3

(21%)

8

(25%)

73

(83%

73

(84%)

74

(81%)

74

(81%)

74

(81%)

74

(81%)

74

(81%)

120 2

(15%)

2

(20%)

7

(23%)

67

(83%)

68

(81%)

68

(81%)

68

(81%)

68

(81%)

68

(81%)

68

(81%)

130 2

(15%)

2

(19%)

5

(17%)

8

(26%)

63

(81%)

63

(81%)

63

(81%)

63

(81%)

63

(81%)

63

(81%)

140 2

(14%)

2

(19%)

4

(11%)

7

(23 %)

58

(82%)

58

(82%)

58

(82%)

59

(79%)

59

(79%)

59

(79%)

150 2

(14%)

2

(18%)

3

(6 %)

6

(23%)

54

(82%)

54

(82%)

54

(82%)

55

(79%)

55

(79%)

55

(79%)

160 2

(14%)

2

(18%)

3

(9%)

5

(20%)

6

(13%)

51

(81%)

51

(81%)

51

(80 %)

51

(80%)

51

(80%)

170 2

(14%)

2

(18%)

3

(4%)

4

(11%)

6

(18%)

48

(80%)

48

(81 %)

48

(81%)

48

(81%)

48

(81%)

180 2

(14%)

2

18%)

2

(5%)

3

(4%)

5

(12%)

45

(82%)

45

(82%)

46

(79%)

46

(79%)

46

(79%)

190 2

(14%)

2

(18%)

2

(8%)

3

(4%)

5

(12%)

6

(15%)

43

(80%)

43

(80%)

43

(80%)

43

(80%)

200 2

(13%)

2

(19%)

2

(7 %)

3

(4 %)

4

(11%)

5

(13%)

41

(80%)

41

(79%)

41

(79 %)

41

(79%)

210 2

(13%)

2

(19%)

2

(8%)

3

 (3%)

4

(12%)

5

(12%)

39

(79%)

39

(79%)

39

(79%)

39

(79%)

220 2

(13%)

2

(20%)

2

(7%)

3

(4%)

3

(5%)

5

(13%)

37

(81%)

37

(80%)

37

(80%)

37

(80%)

230 2

(13%)

2

(18%)

2

(7 %)

2

(4%)

3

(5%)

3

(4 %)

5

(14 %)

35

(82%)

36

(78%)

36

(78%)

240 2

(13%)

2

(18%)

2

(7%)

2

(4%)

3

(5%)

3

(4%)

5

(14%)

34

(80%)

34

(80%)

34

(80%)

250 2

(14%)

2

(17%)

2

(6%)

2

(5%)

3

(5%)

3

(4%)

5

(16%)

33

(78 %)

33

(78%)

33

(78%)

260 2

(13%)

2

(15%)

2

(6%)

2

(4%)

3

(6%)

3

(4%)

5

(12%)

5

(12%)

32

(78 %)

32

(78 %)

270 2

(15%)

2

(14%)

2

(5 %)

2

(4 %)

2

(5%)

3

(3%)

3

(4 %)

5

(13%)

31

(77%)

31

(77%)

280 2

(14%)

2

(13%)

2

(5%)

2

(4 %)

2

(5%)

2

(4%)

3

(4%)

5

(13%)

30

(76%)

30

(76%)

290 - 2

(13%)

2

(6%)

2

(4%)

2

(6%)

2

(5%)

3

(4%)

5

(13%)

5

(13%)

29

(76%)

300 - 2

(0%)

2

(5%)

2

(4%)

2

(5%)

2

(5%

3

(5%)

4

(11%)

5

(13%)

28

(75%)

310 - 2

(0%)

2

(4 %)

2

(3%)

2

(4%)

2

(0%)

3

(0%)

3

(5%)

5

(12%)

27

(75%)

320 - 2

(0%)

2

(2%)

2

(3%)

2

(3%)

2

(5%)

2

(4%)

3

(4 %)

4

(6%)

5

(10%)

330 - - 2 2 2 2 2 3 4 5

53

(0%) (3%) (3%) (4%) (3%) (0%) (8 %) (13%)

340 - - 2

(1%)

2

(0%)

2

(3%)

2

(4%)

2

(3%)

2

(4%)

3

(0%)

4

(12%)

350 - - 2

(1 %)

2

(0%)

2

(3%)

2

(3%)

2

(2%)

2

(2%)

3

(0 %)

4

(14%)

360 - - - 2

(1%)

2

(1%)

2

(2%)

2

(2%)

2

(1%)

3

(0%)

4

(13%)

370 - - - 2

(1%)

2

(2 %)

2

(2%)

2

(3%)

2

(2%)

3

(0%)

3

(0%)

In the above table, we can notice several phase_setsi,t with lower general similarities

containing only 2 to 3 phases. When we analyzed the content of the trace, we found that

the resulting phases divide the trace into very high-level computations. For instance,

when the chunk size is set to 360 and the threshold is set to 90%, the total number of

phases detected in the trace is two. These are located at the chunk numbers 1 and 41,

which means that these phase shift locations are dividing the trace into three major

phases: the initialization phase containing the first 360 methods, which is followed by

two major computational phases, one of them starting from approximately the 361
st

method to 14,760
th

 method and the other computational phase starting from

approximately the 14,761
st
 method till the end of the trace. Although these phases can

provide a high-level understanding of where the major phases occur, we do not think that

they are sufficient to understand the content of a trace since a software engineer will most

likely want to know more about what goes on in each phase. Therefore, there is a need to

investigate other phase sets.

The graph in Figure 4.1 shows that the phase sets that were identified can be grouped into

two large clusters (with a few exceptions) based on the general similarity measure. The x-

54

axis represents the general similarity (in percentage) and the y-axis represents the number

of phases in a phase_seti,t.

Figure 4.1 Phase_Sets and corresponding general similarities for the

JHotDraw trace

The first cluster contains the phase_sets with a general similarity less that approximately

30% whereas the second cluster of phase_sets with general similarities more than

approximately 70%. It should further be noticed in the graph that the cluster of

55

phase_sets with more than 70% general similarities have the number of phases higher

than one hundred which is less feasible for a trace generated simply by executing only a

couple of features. Furthermore, we are interested in considering the cases with lower

percentage of general similarities. Hence, the first cluster with the entries less than 30%

general similarities is selected for further study. For more optimisation, we short list this

cluster and select the phase_sets of general similarities less than 15%.

Once we have the phase_sets of lower values of general similarities, the objective now is

to find the phase_set in which the consecutive similarity between its phases is the lowest.

Therefore, our next step will be to find the consecutive similarities between all phases of

each phase_set with less than 15% general similarity. Table 4.2 shows all the phase_sets

and consecutive similarities between the phases contained in them.

56

Table 4.2 Phase_sets and consecutive similarities for the JHotDraw trace

Chunk Size

(i)

Threshold (t)

(in

percentage)

Phase_Seti,t

(PS)

Summation of

Consecutive

Similarities (S)

Average of

Consecutive

Similarities

(S/PS)

130 30 5 68.660 13%

140 30 4 52.863 13%

170 40 4 53.204 13%

180 50 5 55.099 11%

190 50 5 58.761 11%

190 60 6 66.438 11%

200 50 4 53.966 13%

200 60 5 60.719 12%

210 50 4 56.624 14%

210 60 5 59.243 11%

220 60 5 58.692 11%

230 70 5 61.789 12%

250 70 5 73.585 14%

260 70,80 5 58.760 11%

270 80 5 59.882 11%

280 80 5 59.882 11%

290 80,90 5 59.882 11%

300 80 4 54.647 13%

300 90 5 60.719 12%

310 90 5 58.245 11%

320 100 5 51.055 10%

330 100 5 63.221 12%

340 100 4 58.358 14%

350 100 4 61.019 15%

360 100 4 55.168 13%

57

From the table, we can see that among all the phase sets, the phase_seti,t with lowest

average consecutive similarity percentage is the one with chunk size i = 320 and

threshold t = 100%. Therefore, it can be concluded that this phase_set320,100 contains the

phases that are highly distinct from each other. The five phases (four phase shift

locations) contained in the phase_set320,100 represent the chunk numbers where most of

the previously occurring methods started to fade and new methods started to get invoked.

The chunk numbers or the phase shift locations for the phase_set320,100 with lowest

consecutive similarity are 1, 3, 47 and 49. The following table shows the routine calls

counter after which the phases are located.

Table 4.3 Phase shift locations and corresponding routine calls

Phase Shift Location/

Chunk Number (PSL)

Chunk Size (CS) Routine calls after which a

phase is detected in the

trace(RC = PSL * CS)

1 320 320

3 320 960

47 320 15040

49 320 15680

We can conclude that the concept of consecutive similarity estimation highly supported

our phase detection approach in identifying the chunk size and threshold that are best to

58

detecting the phases in our trace. The following figure 4.2 represents the phase shift

locations detected automatically by our algorithm in the JHotDraw trace obtained by

exercising the scenario under consideration.

 0

320

960

15040

15680

Initialization Phase which involves creating,

preparing and activating a new sheet

Select and Draw the Elipse Figure

Perform Animation on the previously drawn

Ellipse Figure

Save the File on the System

Insert an Image

and

Exit the Application

P1 (chunk 1)

P2 (chunk 3)

P3 (chunk 47)

P4 (chunk 49)

16261

 Call

counter

Figure 4.2 The execution phases in JHotDraw trace

The call counter represents the method calls that are responsible for implementing the

consequent features. It should be noticed that the first phase, which is the initialization

phase, is smaller as compared to the rest of the phases. This is because the trace has been

pre-processed and the utilities, such as get and set methods and mouse movements, have

been removed those of which constitute a major portion of the initialization phase. The

59

solid lines in the figure represent the phase shift locations obtained by applying our

algorithm on the corresponding execution trace. The phases after the initialization phase

represent part of the trace which is responsible for drawing figures and performing other

features. Each one of these phases contains a set of minor activities which include

selecting the button of the figure, drawing the figure and unselecting the button. The last

phase contains methods when the application terminates. In JHotDraw software system

the finalization phase is extremely smaller and is difficult to locate, therefore, this

finalization phase is merged with most commonly the last feature executed in the

computational phase. In our case, the last feature of the scenario is inserting a figure, so

the finalization phase which is approximately the last ten routine calls of the trace is

merged with the inserting a figure feature.

To validate our results, we studied the content of the trace manually and compared the

extracted phases with the ones that actually exist in the trace. We used JHotDraw

documentation to understand the role of the invoked methods. We found that our phases

match the manually detected phases, which shows the effectiveness of our algorithm. The

methods that were responsible of the various features are listed in Table 4.4. Our phase

detection algorithm was successful in putting these methods in each separate phase.

60

Table 4.4 Methods in JHotDraw source code and their responsibilities

Feature Method Name Responsibility

Ellipse CH.ifa.draw.figures.Rectan

gleFigure.basicDisplayBox

Sets the basic display box for figures to

be drawn.

Animation

on Ellipse

CH.ifa.draw.samples.javadr

aw.JavaDrawApp.startAnimat

ion

Starts the animation of the figure.

Save As CH.ifa.draw.application.Dr

awApplication.promptSaveAs

Shows a file dialog and saves drawing.

Insert

Image

CH.ifa.draw.insertImageCom

mand.execute,

CH.ifa.draw.util.Iconkit.r

egisterImage,CH.ifa.draw.u

til.Iconkit.loadImage

Constructs an insert image command,

registers the URL for the image source,

loads an image file with the given name,

caches it, and optionally waits for it to

finish loading.

Exit

Application

CH.ifa.draw.application.Dr

awApplication.exit

Exits the application.

4.4 Discussion

The overall results obtained by applying our phase detection algorithm on the real data

reveal that our proposed approach is very effective in detecting execution phases in large

traces. The target software system that we used to test our algorithm is JHotDraw 5.2

61

which is a well documented open source software system. We chose a scenario that

generated a trace of tens of thousands of calls. We were able to divide the trace into

meaningful phases, which reflect the high-level computations invoked in the traces.

Several phases have been identified by varying the chunk size and the threshold T. One

of the challenges is to explore this large set. We had to focus on the phase sets cluster

with low generality similarity since these are the sets that contain phases that are most

distinct from each other. However, even with this, we were left with still a large set of

phases. The consecutive similarity helped reduce this set to a more manageable set of

phases from which we were able to identify the proper setting of the chunk size and

threshold that best reveal adequate phases.

In practice and for more complex traces, we expect that the exploration of all possible

phases might turn to be a challenging task. We recognize that more work needs to be

done in this direction as we will describe in the last chapter of this thesis.

62

Chapter 5 Conclusion

5.1 Research Contributions

In this dissertation, we presented a novel approach for trace simplification which consists

of dividing an execution trace into execution phases that represent the key computations

contained in a trace. Our algorithm is based on the idea that a phase consists of methods

that start to fade in the trace when a new phase starts to emerge. Using this algorithm, we

believe that the software engineers can get a deep insight of what is happening inside the

program without wasting time in understanding the content of overwhelmingly large and

complex traces.

In particular, the algorithm contains two main steps: the phase detection and phase

location steps. The objective of detecting a phase change is to identify when and where

the methods which are responsible for implementing one phase of a program begin to

fade, simultaneously causing the emergence of new methods which are responsible for

implementing another phase. In order to detect a phase change, the collection of distinct

methods of the program is captured into working sets, which were updated while the

program executes. The objective was to detect when the most frequent methods become

less frequent, which means that new ones are taking place.

63

For locating the execution phases once a phase is detected, we proceed by identifying the

chunk from which many methods start to fade. We collect all the distinct methods from

the chunks that comprise each phase. After performing a certain number of computations

on these methods, the exact location of phase shift is determined.

Our algorithm relies on the chunk size and threshold used to compare working sets,

another contribution of this thesis is a way to determine the best chunk size and threshold.

In particular, we presented a concept of computing the similarity between execution

phases which measure the degree by which the identified phases are from each other. The

general similarity is a cumulative similarity of the individual similarities between all the

execution phases for different sets of chunk sizes and thresholds. A high percentage of

general similarity indicates that the phases are highly similar to each other and vice-versa.

Another concept we introduced was the concept of finding the similarity between

consecutive phases which is much more relevant in terms of phase distinction.

Finally, we applied our techniques to a trace generated from an object-oriented system.

We validate the results using the system documentation. Our approach was capable of

successfully detecting the phases in the generated trace

5.2 Opportunities for Further Research

Several future research directions are needed. First, we need to continue experimenting

on different software systems to further assess the effectiveness of our approach. In

addition, we need to improve the performance of the algorithm since it requires

64

computing phases for each chunk size and threshold. What we need is to find ways to

suggest adequate parameters without having to explore the range of all possible value. A

heuristic-based approach is needed.

We also need to apply our techniques to other types of traces such statement-level traces,

which are considerably larger than routine call traces. We also need to compare our result

with existing trace abstraction techniques, and perhaps combine these different trace

abstraction methods together. Finally, we need to work with software engineers to assess

the value of our approach in practice. We anticipate that this can be done if the proposed

algorithm is supported by a trace analysis tool.

5.3 Closing Remarks

Understanding the behaviour of a software system is a crucial task for many software

engineering activities. To understand the behaviour of the system, however, one needs to

process large traces; this is often a very tedious task. Several trace abstraction techniques

have been proposed but the general consensus is that more research in the area is much

needed to solve the trace analysis problem. We hope the work presented in this thesis can

contribute to alleviate this problem.

65

Bibliography

Arnold 89 R. Arnold, “Software Restructuring”, Proceedings IEEE, pp. 607-

617, April 1989.

Ball 99 T. Ball, “The concept of dynamic analysis”, In Proc. 7
th

 European

Software Engineering Conference and ACM SIGSOFT Symp. on

the Foundations of Software Engineering(ESEC/FSE), pp. 216-

234, Springer, 1999.

Biggerstaff 93 Ted J. Biggerstaff, Bharat G. Mitbander, Dallas Webster, “The

concept assignment problem in program understanding”, In

Proceedings of the 15
th

 International Conference on Software

Engineering, pp. 482-498, IEEE C.S., 1993.

Chikofsky 90 E. Chikofsky and J. Cross 1990, “Reverse Engineering and Design

Recovery: A Taxonomy”, IEEE Software, 7(1), pp. 13–17, 1990.

Constantopoulos 95 Panos Constantopoulos, Mattias Jarke, John Mylopoulos, Yannis

Vassiliou, “The software information base : a server for reuse”,

The VLDB Journal- The International Journal on Very Large Data

Bases, Vol. 4, pp. 1-43, 1995.

66

Cornelissen 08 Cornelissen, B. And Zaidman, A. And Holten, D. And Moonen, L.

And van Deursen, A. and van Wijk, J.J. “Execution trace analysis

through massive sequence and circular bundle views”, the journal

of Systems & Software, vol 81, 12, pp 2252-2268, 2008, Elsevier.

Eclipse TPTP http://www.eclipse.org/tptp/

Fjeldstad 83 R.K Fjeldstad and W.T. Hamlen, “Application Program

Maintenance Study: Report to Our Respondents”, In Proceedings

GUIDE 48, 1983.

Hamou-Lhadj 02 Abdelwahab Hamou-Lhadj, and Timothy C. Lethbridge,

"Compression Techniques to Simplify the Analysis of Large

Execution Traces”, In Proceedings of the 10
th

 International

Workshop on Program Comprehension, pp. 159-168, 10
th

December 2002.

Hamou-Lhadj 03 Abdelwahab Hamou-Lhadj, and Timothy C. Lethbridge,

"Techniques for Reducing the Complexity of Object-Oriented

Execution Traces”, In Proc. of the VISSOFT, pp. 35-40, 2003.

Hamou-Lhadj 04 A. Hamou-Lhadj, and T. C. Lethbridge, “A Survey of Trace

Exploration Tools and Techniques”, In Proc. of CASCON 2004,

http://www.eclipse.org/tptp/

67

IBM Press, ACM Digital Library , Toronto, Canada, pp. 42-54,

2004.

Hamou-Lhadj 05 A. Hamou-Lhadj, and T. Lethbridge, and L. Fu, “SEAT: A Usable

Trace Analysis Tool”, International Workshop on Program

Comprehension (IWPC), IEEE CS, St. Louis, Missouri, USA, pp.

157-160, 2005.

Hamou-Lhadj 06 Abdelwahab Hamou-Lhadj, and Timothy C. Lethbridge,

"Summarizing the content of Large Traces to Facilitate the

Understanding of the Behaviour of a Software System", In Proc. of

the 14
th

 IEEE International Conference Program Comprehension,

pp. 181-190, 2006.

Jerding 97 D. Jerding, J. Stasko, T. Ball, “Visualizing Interactions in Program

Executions”, In Proceedings of the 19
th

 ICSE, Boston,

Massachusetts, 1997, pp. 360-370.

Jerding 98 D.F Jerding, J.T Stasko, “The Information Mural: A Technique for

Displaying and Navigating Large Information Spaces”, In

Proceedings of the IEEE Transactions on Visualization and

Computer Graphics, vol. 4, pp. 257-271, Jul-Sep 1998.

JHotDraw 5.2 http://www.jhotdraw.org/

http://www.jhotdraw.org/

68

Malony 91 A.D. Malony, D.H. Hammerslag, D.J. Jablonowski, “Traceview: A

Trace Visualization Tool”, In the Proceedings of IEEE Software”,

pp. 19-28, Illinois University, 1991.

Mayrhauser 95 Anneliese von Mayrhauser and A. Marie Vans 1995, “Program

Comprehension during Software Maintenance and Evolution”,

Colorado State University, IEEE Computer, 28 (8), pp. 44-55,

August 1995.

Moonen 08 Moonen, Bas Cornelissen and Leon Moonen, “On Large Execution

Traces and Trace Abstraction Techniques”, Delft: Software

Engineering Research Group, 2008, ISSN 1872-5392.

Müller 88 Müller H. A., Klashinsky K., “Rigi – A System for Programming

in-the-large”, In Proceedings of the 10th International Conference

on Software Engineering, ACM Press, pages80-86, 1988.

Nelson 96 Michael L. Nelson, “A Survey of Reverse Engineering and

Program Comprehension”, April 1996, ODU CS-551 Software

Engineering Survey.

Pauw 98 W. De Pauw, D. Lorenz, J. Vlissides, M. Wegman, “Execution

Patterns in Object-Oriented Visualization”, In Proceedings of the

69

4
th

 USENIX Conference on Object-Oriented Technologies and

Systems (COOTS), Santa Fe, NM, 1998, pp. 219-234.

Pirzadeh 10 H. Pirzadeh, A. Agarwal and A. Hamou-Lhadj, “An Approach for

Detecting Execution Phases of a System for the Purpose of

Program Comprehension”, In Proc. of the 8
th

 International

Conference on Software Engineering Research, Management &

Applications (SERA 2010), Montreal, Canada, 2010.

Renieris 99 Manos Renieris, Steven P. Reiss, “Almost: Exploring Program

Traces”, In Proceedings of the 1999 Workshop on new paradigms

in information visualization and manipulation in conjunction with

the eighth ACM international conference on Information and

knowledge management, pp. 70-77, United States, 1999.

Rugaber 95 Spencer Rugaber, “Program Comprehension”, College of

Computing, Georgia Institute of Technology, May 4, 1995.

Reiss 05 S.P Reiss, “Dynamic detection and visualization of software

phases”, in Proc. 3
rd

 ICSE Int. Workshop on Dynamic Analysis

(WODA), pages 1-6, 2005. ACM SIGSOFT Sw. Eng. Notes 30(4).

70

Systa 00 T. Systa, “Understanding the Behaviour of Java Programs”, In

Proceedings of the 7
th

 Working Conference on Reverse

Engineering, pp. 214-223, November 2000.

Systa 99 T. Systa, “On the relationships between static and dynamic models

in reverse engineering Java software”, In Proceedings of the 6
th

Working Conference on Reverse Engineering, pp. 304-313, 1999.

Tverskey 77 Tverskey, Amos, “Features of Similarity”, Psychological Review,

84 (July), pp. 327-352.

Watanabe 08 Yui Watanabe, Takashi Ishio and Katsuro Inoue, “Feature-Level

Phase Detection for Execution Trace Using Object Cache”, In

Proceedings of the 2008 International Workshop on Dynamic

Analysis: held in conjunction with the ACM SIGSOFT

International Symposium on Software Testing and Analysis (ISSTA

2008), pp. 8-14, 2008.

71

