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Abstract 

 

Trace Abstraction Based on Automatic Detection of Execution Phases 

Akanksha Agarwal 

 

Understanding the behavioural aspects of a software system is an important activity in 

many software engineering activities including program comprehension and reverse 

engineering.  

The behaviour of software is typically represented in the form of execution traces. 

Traces, however, tend to be considerably large which makes analyzing their content a 

complex task. There is a need for trace simplification techniques that can help software 

engineers make sense of the content of a trace despite the trace being massive.  

In this thesis, we present a novel approach that aims to simplify the analysis of a large 

trace by detecting the execution phases that compose it. An example of a phase could be 

an initialization phase, a specific computation, etc. Our algorithm processes a trace 

generated from running the program under study and divides it into phases that can be 

later used by software engineers to understand where and why a particular computation 

appears. We also show the effectiveness of our approach through a case study.  
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Chapter 1 Introduction 

 

 

1.1 Problem and Motivation  

Understanding the behavioural aspects of a software system can help in many software 

engineering activities such as debugging, adding new features to an existing system, or 

simply understanding what the system does and why it does it this way. This is 

particularly important for those systems with poor documentation and for which the 

initial designers have left the company taking with them valuable knowledge about the 

system.  

The behaviour of software system is typically represented in the form of execution traces. 

There exist several types of traces including traces of routine (method) calls, traces of 

inter-process communications, statement traces, etc. In fact, one can trace any aspect of 

the system depending on the task at hand. Traces, however, have historically been 

difficult to work with. The challenge is that they tend to be extremely large, often 

hundreds of thousands lines.  There is a need for techniques to simplify the content of 

large traces to facilitate their analysis. Recently, there has been a noticeable increase in 

the number of studies in the area of trace abstraction and simplification [Moonen 08, 

Hamou-Lhadj 05, De Pauw 98, Jerding 97, Renieris 99, Malony 91, Jerding 98]. These 
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techniques, however, suffer from several limitations including the fact that they rely 

extensively on user input and that most of these techniques rely on some sort of 

visualization scheme, which limit their reuse [Hamou-Lhadj 04].  

The objective of the study presented in this thesis is to develop techniques to facilitate the 

analysis of large execution traces in order to help software engineers understand the main 

behaviour of the traced program, which in turn can enable software engineering tasks that 

require some understanding of the system behavioural aspects. For example, a software 

engineer who wishes to improve an existing feature of a poorly documented system will 

most likely need to understand how the feature is implemented before making any 

changes that preserves the system’s reliability. He or she can then generate a trace by 

exercising this feature and proceed to understanding and analyzing its content to build an 

initial understanding of how the feature is implemented. This understanding aims to 

compensate for a lack of proper documentation and access to system experts.  

In this thesis, we propose a novel approach to simplify the analysis of large traces by 

automatically extracting the main execution phases they contain. We define an execution 

phase as any part of a trace that performs a specification task including initialization of 

variables, specifications computations, etc. By doing this, we transform the trace from a 

mere raw of events to a more meaningful sequence of phases that can be readily explored 

by a software engineer to understand different parts that comprise a trace at a higher-level 

of abstraction.  
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Our algorithm for the automatic detection of execution phases is  based on the fact that a 

phase shift within a trace appears when a certain set of events responsible for 

implementing a particular task and which are prevalent in one phase, start to “fade” as the 

program enters a new phase, where new events start to appear. In addition to this, our 

phase detection technique operates on the trace while it is generated (i.e., online). This is 

contrasted with the post-mortem analysis of a trace and which requires the trace be first 

generated in its entirety before any processing is applied. This offline approach has the 

obvious shortcoming of having to store the entire trace although it may only be necessary 

to explore part of it. Our phase detection approach is also automatic to a great extent 

relieving users from heavy intervention that is not desirable when working with traces. 

The traces on which we focus on in this thesis are traces of routine calls. By routine, we 

mean a procedure, function, or method. Our approach applies to procedural and object-

oriented systems and it is language-independent as long as the programming language 

used to develop the system support the concepts of routines.  

 1.2 Research Contributions 

The main research contributions of this thesis are as follows: 

 A novel trace abstraction technique based on the idea of dividing a large trace into 

meaningful segments, called execution phases, which reflect the main tasks of the 
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traced program. Our approach is automatic and operates on the trace as it is 

generated. 

 A novel algorithm for extracting execution phases from a trace. The algorithm is 

based on the idea that trace elements fade as new phases emerge.  

 The phase detection algorithm has been applied to the execution traces generated 

from an object-oriented target software system in order to show the applicability 

of our approach.  

1.3 Thesis Outline 

The rest of the thesis is structured as follows: 

Chapter 2 - Background 

The thesis begins with the background literature review, including a brief overview of the 

topics that are related to our research, namely, reverse engineering, program 

comprehension, static and dynamic analysis. The remainder of this chapter contains a 

detailed survey of the existing execution phase detection techniques, including their 

advantages and disadvantages, which are followed by a general discussion in the end. 
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Chapter 3 – Phase Detection Approach 

The phase detection algorithm is presented in this chapter. The chapter starts with the 

definition of execution phases followed by the overall approach which includes the 

approach diagram featuring the steps of our phase detection algorithm. The chapter 

continues with the detailed description of the feature-trace generation process and the two 

steps that constitute our approach, i.e. phase change detection and phase shift location. 

Next, we present a working example which shows how the algorithm is applied to detect 

the execution phases in a sample trace. The last section of this chapter concludes with a 

discussion on the applicability of our approach on real data.  

Chapter 4 - Evaluation 

This chapter introduces a case study which is used to evaluate the execution phase 

detection approach presented in the previous chapter. In the beginning of this chapter, the 

target system that is chosen for the case study is described which is followed by a 

discussion on the usage scenario based on which the trace has been generated. The 

quantitative and the qualitative results of applying our phase detection algorithm and the 

evaluation process are discussed in details. The chapter ends with a brief discussion of 

the approach.   
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Chapter 5 - Conclusions 

We conclude the thesis in this chapter by revisiting the main research contributions. We 

also present opportunities for future research. The closing remarks are presented at the 

end of the chapter.  
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Chapter 2 Background 

 

 

2.1  Related Topics 

The topics related to our thesis include reverse engineering, program comprehension, 

static analysis and dynamic analysis. 

2.1.1 Reverse Engineering 

Reverse engineering is concerned with investigating techniques and tools to help 

software engineers understand the complex legacy software systems [Nelson 96]. Unlike 

forward engineering, which involves the advancement from one step to another in the 

software development life cycle, the process of reverse engineering is to go in a reverse 

direction, starting from the implementation phase to gathering the requirements and 

hence trying to get the structural and behavioral aspects of existing software systems by 

building several static and dynamic abstract models [Nelson 96]. Reverse engineering can 

be achieved by gathering all the software components, identifying their inter-

relationships, and presenting these entities at higher levels of abstraction. There are 

particularly four types of reverse engineering processes [Nelson 96]. They include: 
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1. Re-documentation: Re-documentation is the simplest and the oldest form of reverse 

engineering. Several legacy systems are very poorly documented and understanding 

their artefacts such as source code and the other information is a difficult task. Hence 

re-documentation came into existence. It is the process of transforming the old code, 

documents related to the code and the programmer’s knowledge into a new or 

updated form of documentation which can be textual or graphical [Nelson 96]. This 

form of reverse engineering is responsible for correction of system documentation at 

the same level of abstraction. Re-documentation is an important activity as the 

software engineers need to refer to the program documentation to understand what the 

code is doing and why it is doing it this way. 

 

2. Design Rediscovery: The main purpose of this form of reverse engineering is to re-

design a model of the system at a higher level of abstraction using the same domain 

knowledge and documentation, along with the source code.  

 

3. Restructuring: It involves the transformation of a system to another representation at 

the same level of abstraction, rather than abstracting it to a higher-level, while 

preserving its functionality and behaviour. Restructuring improves the quality 

attributes of the software products by re-organizing the logical structure of existing 

software systems [Arnold 89]. For example, the GOTO statements which were 

heavily used in the older software of Cobol or Fortran are now being replaced with 

their modern equivalents such as loops and conditional statements. The other 
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examples include editing documentation, rearranging the code by renaming variables, 

abstracting functions etc. These changes greatly improve the readability of software 

programs. 

 

4. Reengineering: Reengineering of a software system was described by Chikofsky and 

Cross as “the process of analyzing a subject system to identify the system’s 

components and their interrelationships and create representations of the system in 

another form or at a higher level of abstraction” [Chikofsky 90]. While reverse 

engineering advances from the low-level program code to a higher-level of 

abstraction, reengineering makes use of the increased understanding to re-implement 

the code in a new form [Rugaber 95]. Hence, reengineering can be defined as a 

process of modifying the software system by adding a new functionality to it or by 

rectifying the existing errors after the system has been reverse engineered. 

 

We believe that the approach presented in this thesis can help with many of the above 

reverse engineering and reengineering tasks. For example, the extracted phases from a 

large trace can be further refine to recover the behavioural design diagram of the traced 

scenarios, which in turn can serve many purposes including documenting the design, 

helping in restructuration efforts and so on. 
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2.1.2  Program Comprehension 

According to Rugaber, program comprehension is the process of acquiring knowledge 

about a computer program in order to perform certain activities on it such as error 

correction, reuse, system enhancement and documentation [Rugaber 95]. Biggerstaff et 

al. define program comprehension as  “A person understands a program when he or she is 

able to explain the program, its structure, its behaviour, its effects on its operation 

context, and its relationships to its application domain in terms that are qualitatively 

different from the tokens used to construct the source code of the program” [Biggerstaff 

93].  

It is a research area which led to the development of several revere engineering tools and 

techniques to help software engineers understand legacy software systems. It is very 

much required to understand the software sufficiently before it can be modified because 

maintaining the systems totally depends on understanding the structure of the program. 

The main problems that the programmers face today are the difficulties in understanding 

existing code, due to its unfamiliarity and the lack of proper documentation. A large part 

of the software maintenance process is devoted to comprehend the system that has to be 

maintained. Fjeldstad and Hamlen reported that 62% of the time and effort spent on 

understanding, enhancement and correction tasks are devoted to comprehension 

activities. These activities involve reading the documentation, scanning the source code, 

and understanding the modifications to be made [Fjeldstad 83]. It is therefore very crucial 

for programmers to have a deep insight of the software they have to modify in order to 
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maintain it. In short, the better programmers understand the software system at hand, the 

better will be the maintenance process, and hence, software development will be 

improved.  

One of the main objectives of this thesis is to assist software engineers in the program 

comprehension process with a focus on the understanding of how the system behaves, 

instead of what the system looks like. We achieve this by allowing them to map the 

execution phases detected by our program to the specific code that implement the 

features corresponding to those execution phases.   

2.1.3  Static and Dynamic Analysis 

Static analysis of software systems is performed without actually executing the program. 

The static information obtained by the static analysis of software systems describes the 

structure of the software and reveals the properties that hold for all possible system 

executions. This information is extracted by analyzing the source code and can be viewed 

using several reverse engineering tools like Rigi [Müller 88]. This static information is 

composed of the artefacts contained in the program and the relationship between them. 

For example, in the case of Java, these artefacts could be packages, classes, methods, 

variables etc. Based on the dependencies between these artefacts, static dependency 

graphs are constructed which can further be employed for various studies. 
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Dynamic analysis of the software programs (the focus of this thesis) is performed by 

actually executing the program to understand the run-time behaviour of the software 

system. Another definition of dynamic analysis is presented by Ball: “dynamic analysis is 

the analysis of the properties of a running software system” [Ball 99]. The major 

difference between static and dynamic analysis is that in static analysis the system 

properties hold true for all the executions whereas in dynamic analysis the properties for 

each execution hold only for the executed scenarios.  

As we mentioned in the introductory section, the information that is generated from 

executing a software system takes generally the form of execution traces. Other run-time 

information such as system profiles are another form but they are most used to analyze 

the system performance and are, therefore, outside the scope of this thesis. Traces contain 

a record of the events that take place while the program is executed. For example, the 

routine (method) call traces constitute a trail of methods where each method is called by 

another in a sequential fashion. Depending upon how the probe is written, a variety of 

information can be obtained in a trace, apart from just acquiring the names of the 

methods, such as the nesting level of methods, the nature of each method whether it is 

public, private or protected, etc. In this thesis, we focus on traces of method (routine) 

calls, leaving other types of traces for future research. 

The run-time information can be generated in different ways including source code 

instrumentation (done automatically), which requires modification of the target system. 

Instrumenting of the execution environment is another possible alternative, which neither 
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requires the modification of source code nor the presence of code itself. Figure 2.1 shows 

a typical way on how traces are generated. 

Target Software System

Instrumentation Execution

Scenario

Execution

Trace

 

Figure 2.1 Execution trace generation 

2.2  A Survey of Existing Phase Location Techniques 

In this section, we present a survey of the most cited execution phase detection tools and 

techniques. Although we did not attempt to examine and include all the studies that exist 

in the previous literature, however, we believe that the ones presented in this section 

reflect the current state of art in phase detection approach.     

Steven P. Reiss [Reiss 05] introduced the concept of dynamic detection and visualization 

of software phases. He created a software visualization tool called as JIVE which helps 
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software engineers understand the behaviour of a software system by providing them a 

high level view of what actually is happening inside the target Java system. The main 

task of JIVE is to summarize the information of execution after a certain period of time, 

for example, in the interval of 10 milliseconds. This execution information is comprised 

of the numbers of calls made by methods of one class or a group of classes, the 

information about objects being allocated and destroyed and the information about the 

behaviour of the threads occurring in different parts of execution. There exists a 

similarity between their technique and our approach which is that both approaches work 

dynamically, i.e. the phases are determined while the program is being executed. 

However, one of the drawbacks of determining the phases through their technique is that 

the generation of the phases is greatly defined by the programmer, whereas our method is 

almost fully automatic. 

In [Watanabe 08], Watanabe et al. proposed a novel technique to detect phases in the 

execution traces of large object-oriented software programs by using a Least Recently 

Used (LRU) Cache for observing the objects which are prepared at the beginning of the 

phase and are destroyed with the end of the phase. They define a phase as a consecutive 

sequence of run-time events where some phase can correspond to a feature and the other 

phase may represent a minor phase. Their approach is somewhat similar to our phase 

detection technique in a way that they frequently update the LRU cache when the objects 

responsible for a new phase are assembled. To achieve the visualization, they integrated 

their approach to a sequence diagram visualization tool called Amida which 
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automatically detects the phases and visualizes them in the form of sequence diagrams. 

Dealing with object creation and deletion, however, poses serious challenges to the 

scalability of the approach. In this thesis, we focus on method call traces. We also present 

a different algorithm than the one presented by Wanabe et al.     

In [Cornelissen 08], the authors were concerned with developing techniques that allow 

the visualization of data which is gathered at run-time from a software system in a 

summarized way, while still maintaining the integrity and readability of data. In order to 

achieve this, they presented two views of a software system: circular bundle view and the 

massive sequence view. In the former view, all the structural elements which comprise a 

software system are projected on the circumference (outline) of a circle in a nested 

fashion and are then viewed while their inter-relationships are drawn in the middle of the 

circular bundle. These relationships are then bundled together to avoid visual clutter and 

hence improve scalability. If the edges in a certain portion of the circumference are 

thicker, it indicates that most of the activities are centered around these calls. Another 

view that is described by the authors is the message sequence view, also named as 

message sequence charts in which the entities of a software system are arranged in an 

orderly fashion. This view greatly supports the readability by displaying all the 

information in a vertical manner.  But on the other hand, if there is an extremely large 

amount of information, then this type of arrangement creates a problem in navigation. 

The massive sequence view indicates that there are three major “phases” in the execution 

scenario. They are the input phase, calculation phase and an output phase. The authors 
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have used several zoom-in and zoom-out techniques to visualize the circular bundles. The 

difference between their technique and ours is that they focus on the visualization tools 

and techniques to give a representation of execution phases, whereas, our technique 

automatically detects and locates the phases in an execution trace no matter which 

visualization technique is used.  
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Chapter 3 Execution Phase Detection Approach 

 

 

In this chapter, we present our approach for detecting and locating the various execution 

phases that constitute an execution trace. The rest of the chapter is organised as follows: 

In Section 3.1, we define in more detail what we mean by execution phases. The overall 

approach of detecting phases in large traces including the process of generating traces, 

detecting phase changes, and locating where the phase shift occur is presented in Section 

3.2 which is followed by a brief summary of the chapter in the last Section 3.3. 

3.1 What is an Execution Phase? 

We define an execution phase as a segment of a trace that performs a particular 

computation such as initializing variables, executing a specific algorithm, and so on. 

Wantanabe et al. describe a phase as a feature that represents the functionality of a 

program at higher levels of abstraction [Watanabe 08]. They also state that it is suitable to 

divide a large execution trace into smaller execution phases before performing any 

further processing of the trace content. This can assist software developers in 

understanding the content of a trace by focusing on smaller segments (i.e., its execution 

phases) instead of going through the entire trace.   
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Initialization Phase

Computational Phase

Finalization Phase

Execution

Trace

 

Method

call 

counter

 

Figure 3.1 Execution phases in a trace 

 

At a high-level, a program run may involve three main phases (Figure 3.1): Initialization 

phase, main computation, and a finalization phase. These phases can be further divided 

into sub phases revealing more details about what the program is doing. Our objective, in 

this thesis, is to propose an algorithm that takes a method call trace as input and 

automatically extracts its main execution phases at various levels of abstraction. The idea 

behind our phase detection approach, which is described in more detail later, is to detect 

when and where during the execution of a program, execution phases appear. Since a 

phase implements a particular computation, it is therefore reasonable to assume that it has 

some components that distinguish it from the other phases. In other words, while 

browsing a trace, the methods that implement a particular phase start to “fade” as new 

methods begin to emerge, indicating the beginning of another phase.  
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In addition, our proposed phase detection algorithm operates on a trace while it is 

generated (i.e., on the fly). This is contrasted with an offline approach, where the entire 

trace is first collected before applying the algorithm. Online processing of traces is 

usually more desirable than an offline approach since the users can see the results early 

and may need to make decisions based on this early feedback without having to wait until 

the entire trace is generated. 

3.2 Overall Approach  

Figure 3.2 shows a general overview of our approach for detecting and locating the 

execution phases in a trace. First, the system is instrumented and a trace is generated by 

exercising the scenario under analysis. The two fundamental steps of our phase detection 

algorithm are: Phase Change Detection and Phase Shift Location. The objective of the 

phase change detection is to estimate whether the methods which are prevalent in one 

phase have begun to disappear as new ones have started to appear.  

Once a phase change is detected, the phase shift location step consists of detecting the 

exact location of the phase transition. It is desirable to know the exact location of a phase 

shift in the trace in order to distinguish the different phases from one another. This is 

obtained by detecting where exactly the methods belonging to one phase have started to 

effectively fade or completely disappear leaving their place to new methods belonging, 

presumably, to the next phase. The components of our approach are explained in more 

detail in the subsequent sections. 
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Figure 3.2 Overall approach diagram 

 

3.2.1. Feature-Trace Generation 

The first step of our approach is to generate a suitable feature-trace which is obtained by 

exercising an execution scenario that involves the execution of several essential features 

under study. For example, for a drawing tool such as the JHotDraw software system (the 
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system used for the case study), the features may include laying the foundation of a 

drawing, drawing a figure thereafter which could be followed by inserting more figures 

and animations, modifying these figures, deleting them etc. We have used source code 

instrumentation to generate traces because of its simplicity and the availability of tool 

support.  

3.2.2. Phase Change Detection 

The phase change detection step aims to detect a shift from one set of frequently 

appearing methods to another set of newly introduced methods. As the program executes, 

a set of distinct methods are captured in a set which is called a working set (WS). The 

prevalence of the methods in a working set is computed based on the order in which they 

are invoked and then they are arranged in a descending sequence of their prevalence. 

That means, the methods with high prevalence value appear at the beginning of the 

working set whereas the less frequent methods come in the end. The way the prevalence 

is computed is presented later in this chapter.  

As new methods appear in the execution of the program, the working set is constantly 

updated so that it can reflect the changes in the program’s behaviour. However, updating 

the working set on each new method invocation can be relatively expensive in terms of 

computations. To alleviate this, we propose updating the working after a certain number 

of method calls occur. We call this the chunk of method calls. Therefore, the update rate 

of the working set depends on the chunk size which is provided as an input to the phase 
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change detection program (depicted in Figure 3.3). This chunk size is a variable which 

can be set to different values by the user.  

1   PhaseFinder(Chunki: chunk of methods, T:threshold) 

2   { 

3    if (i == 1)   // If it is the first chunk of the trace 

4     WS = new workingset() 

5   for each method m in Chunki 

6    { 

7     if m is not in WS 

8     { 

9      WS.add(m) 

10     } 

11     WS.rank_methods()  // using the methods prevalence 

12    } 

13    Snapshoti = WS 

14    if (i == 1) //Snapshot0 is created when the first chunk is processed 

15     Snapshoto = Snapshoti 

16    Distance = compare (Snapshoto, Snapshoti) 

17    if (Distance < T) 

18    { 

19     for each candidate m // This part is used for phase shift location 

20     { 

21      for every chunk in {Snapshoto ... Snapshoti} 

22       if m.rank(chunk) is close to mid-rank 

23        chunk.vote() 

24           return (chunk with maximum votes) 

25    } 

26     Snapshoto = Snapshoti 

27    } 

28   } 

 

Figure 3.3 The pseudo code of phase finding algorithm 

 

In order to detect a phase change, the methods of the current snapshot of a working set 

are compared with the methods contained in the original snapshot of working set (lines 

16-18 of the algorithm). If less than a certain threshold, T, of the methods of the original 
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working set appear in the current working set, then this suggests that a phase change has 

taken place since this means that new methods are now becoming more prevalent than the 

ones already in the working set. Determining the threshold T in advance is not possible 

since it might depend on the application. It is given in our algorithm as input. In practice, 

the tool that supports our approach should be able to allow enough flexibility to vary the 

threshold T. In Section 3.3 of this thesis, we propose a technique for determining proper 

threshold T and the chunk size that would lead to an adequate set of phases. 

Another decision we made in our algorithm is concerned with the ways working sets are 

compared. Instead of comparing all the methods of the current working set, one possible 

optimization is to compare only a few of them which have the highest ranking (i.e. the 

ones that appear in the beginning of the working set). The number of methods that are to 

be compared can be equal to the chunk size since, in the worst case scenario, the number 

of new distinct methods that can be found in a new chunk will always be less than or 

equal to the chunk size.  

Figure 3.4 shows an example of a routine call sample trace that will be used to illustrate 

the algorithm. Considering that the chunk size is set to 3, the original working set WS 

will contain the first 3 methods A, B and C of the trace. These methods are sorted in a 

descending order based on their ranking (prevalence).  
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Figure 3.4 A sample routine (method) call trace 
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The prevalence function takes into account the frequency of a method in part of the trace 

that has been processed so far (frequency(m)), the first chunk number in which the 

method was first introduced (first_chunk(m)), the current chunk number under process 

(curr_chunk) and the chunk size (chunk_size). The complete equation is as follows: 

sizechunkmchunkfirstchunkcurrent

mfrequency
mP

_*)1)(__(

)(
)(

 

This equation keeps track of the prevalence of all the methods as the algorithm advances 

through the chunks of the trace. If a set of methods keep appearing relatively at the 

similar rate after each chunk is processed, then this is a good indicator that the program is 

still in the same phase. If some of the methods start fading based on a certain threshold 

percentage, then this is an indication of the beginning of a new phase.  

When applying the prevalence function to the methods of Chunk 1 in the trace of Figure 

3.4 we obtain P(A) = 1/{(1-1)+1}*3 = 1/3. Likewise, the prevalence of methods B and C 

is also 1/3. This is so because all the three methods A, B and C appear only once in the 

first chunk. Since the prevalence of each method in Chunk 1 is the same, therefore, they 

all are assigned the same rank 1. The working set that is obtained after processing the 

first chunk of the trace is {A, B, C}. The content of the first working set is acknowledged 

as the original working set and it is updated with the processing of the following chunks 

of methods while the trace is being generated, therefore giving rise to different snapshots 

of the original working set.  
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As the algorithm processes the upcoming chunks, it updates the working set by adding 

the newly encountered methods, computes their prevalence and assigns them a ranking 

based on the corresponding prevalence. For instance, the Chunk 2 of the trace in Figure 

3.4 contains methods C, D and B. On recomputing the prevalence of all the methods and 

updating the working set, we obtain: 

P (A) = 1 / {(2-1) + 1}*3 = 1/6. 

P (B) = 2 / {(2-1) + 1}*3 = 2/6 = 1/3. 

P (C) = 2 / {(2-1) + 1}*3 = 2/6 = 1/3. 

P (D) = 1 / {(2-2) + 1}*3 = 1/3. 

The first update of the working set is {B, C, D, A}. It shows that the method A, which 

appeared at the first position in the previous (original) working set, now occupies the last 

position which indicates that it has gradually started to fade, whereas, methods B and C 

still have some strength. Each time we update the working set, we compare it with the 

original snapshot of working set and if there is a significant change between the original 

working set and the current one, then this indicates the beginning of a new phase. 

Assuming that the threshold T is set to 20% in this example, the methods B and C in 

original working set {A, B, C} do appear at the beginning of the current snapshot of 

working set {B, C, D, A}. That means, a phase change has not been detected so far. 

Hence, the process of updating the snapshots of working sets continued until less than 

20% of the methods in original working set appear in the current snapshot of the working 

set.  
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Table 3.1 Phase Change Detection Example 

 

Chunk 

no. 
Working set name 

Methods 

introduced in 

chunk 

Snapshots 

Phase 

Shift 

Detected 

1 
Original working set 

(Snapshot 1) 
A, B, C {A, B, C}  

2 Snapshot 2 D {B, C, D, A}  

3 Snapshot 3 H {C, H, A, B, D}  

4 Snapshot 4 
No new 

methods 
{C, A, B, H, D}  

5 Snapshot 5 M {M, B, C, H, A, D}  

6 Snapshot 6 N, L {N, L, B, C, M, H, A, D}  

7 Snapshot 7 
No new 

methods 
{N, B, H, C, L, A, M, D}  

8 
Current working set 

(Snapshot 8) 
P {N, P, L, B, H, C, M, A, D}  

 

Table 3.1 shows the snapshots of the working sets that correspond to each chunk. With a 

threshold set to 20%, a new phase will be detected, in this example, after the Chunk 8 is 

processed. This is so because none of the methods of the original working set appear in 
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the first 3 methods of the current working set (snapshot 8). Hence, Chunk 8 is a point of 

phase detection. 

3.2.3 Phase Shift Location 

Once we detect that there is a phase in the trace, it is now required to determine the exact 

location of phase transition. In order to achieve this, the distinct methods appearing in all 

the working sets, starting from the original working set to the one in which the phase is 

detected, are grouped together in what we call the Observation Set. The observation set 

resulting from the previous example is: {A, B, C, D, H, M, N, L, P} since these are the 

methods that appear in the working set where the phase has been detected.  

The next step is to find the exact chunk in the trace where most of these methods start to 

fade. If we consider the fading of a method m as it is going from its best rank (somewhere 

in one phase) to its worst rank (somewhere in another phase), then we presume that the 

starting point where the ranking of the method m starts to decline should be somewhere 

in the middle. We call this point the mid-rank point which we compute as follows: 

 

2

)()(
)(

mkhighestranmlowestrank
mmidrank  

The lowest and highest ranks represent the worst and best ranks of a method m in any 

working set where the method appears. Table 3.2 shows a list of methods in the 

observation set and their mid-rank points. For example, a method  A has the lowest rank 
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in Chunk 8 and the highest rank in Chunk 1. Therefore, its mid-rank point is 4.5 (i.e. 

(8+1)/2). Now we have to find the chunks in which the rank of method A is closest to its 

mid-rank. It can be observed that the ranking of A is close to 4.5 in Chunk 2, Chunk 5 and 

Chunk 6 (see Figure 3.5). For each method in the observation set, we list the chunks in 

which the method reaches its mid-rank point (as shown in Table 3.2). 

 

Table 3.2 Mid-rank value of the methods of Figure 3.4 

Method call Mid-rank 
Chunks where the rank of the method is close to the 

mid-rank value 

A 4.5 Chunk2, Chunk5, Chunk6 

B 2.5 Chunk3, Chunk4, Chunk5, Chunk6, Chunk7 

C 3 Chunk5, Chunk6, Chunk7 

D 6 Chunk3, Chunk4 

H 4 Chunk7 

M 5 Chunk6, Chunk8 

N 1 Chunk6, Chunk7, Chunk8 

L 3 Chunk8 
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P 1 Chunk8 

 

We refer to the chunks in which a method m reaches its mid-rank point as the voting 

chunk set of this method. This set indicates the possible places where the method might 

start fading. For example, the voting chunk set of method C is {Chunk 5, Chunk 6, 

Chunk 7}. That means, C could have started to disappear in any of these chunks (see 

Figure 3.7). Similarly, the voting chunk set of methods A and B are {Chunk 2, Chunk 5, 

Chunk 6} and {Chunk 3, Chunk 4, Chunk 5, Chunk 6, Chunk 7} and are shown in Figure 

3.5 and Figure 3.6. 

 

Figure 3.5 The rank of method A in each snapshot 

Ranks of A = (chunk1: 1, chunk2: 4, chunk3: 3, chunk4: 2, chunk5: 5, chunk6: 5, 

chunk7: 6, chunk8: 8) mid-rank(A) = 4.5. 



 
 

39 

 

Figure 3.6 The rank of method B in each snapshot 

Ranks of B = (chunk1:1, chunk2: 1, chunk3: 3, chunk4: 2,    chunk5: 2, chunk6: 3, 

chunk7: 2, chunk8: 4) mid-rank(B)= 2.5 

 

In order to find the phase transition, we simply need to compute the voting chunk set of 

all the methods in the observation set and locate the chunk that receives the highest vote 

(Lines 17 to 26 of the algorithm described in Figure 3.3). This is the chunk in which most 

methods of a phase have started to fade and therefore, this chunk will be considered as 

the location of phase transition.  
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Figure 3.7 The rank of method C in each snapshot 

Ranks of C = (chunk1:1, chunk2: 1, chunk3: 1, chunk4: 1, chunk5: 2, chunk6: 4, 

chunk7: 4, chunk8: 5) mid-rank(C)= 3 

 

The results of the chunk voting for the sample trace in Figure 3.4 are shown in Table 3.3. 

The chunk that obtained the maximum votes is Chunk 6, which indicates that the phase 

transition has taken place in this chunk. If we look at the trace of Figure 3.4, we can see 

that starting from Chunk 6, most of the methods like A, B and C have started to appear 

less frequently whereas the new methods like H, M and N have started to emerge, 

therefore invoking a new phase. Hence, the overall approach detects the phase at Chunk 8 

and locates the phase transition at Chunk 6. 
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Table 3.3 Phase shift location based on majority voting 

 

Chunk no. Votes Phase Shift 

Chunk1 0  

Chunk2 1  

Chunk3 2  

Chunk4 2  

Chunk5 3  

Chunk6 5  

Chunk7 4  

Chunk8 4  

 

3.2.4 Determining the chunk size and the threshold 

As aforementioned, our approach depends greatly on the chuck size and the threshold T 

used to compare the content of the working sets. By varying these two variables, one may 

end up with different phases. The question is therefore: What would be the most suitable 

chunk size and threshold T for the application at hand?  

To answer this question, we propose to vary the chuck size and the threshold T as 

follows: 
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 We vary the chunk size from 1 to the number of distinct methods invoked in the 

trace. This is the maximum number of methods that can form a chunk size when 

removing all repetitions. 

 We vary the threshold T from 0% to 100%. This will cover all possible thresholds. 

For each value of the chunk size and the threshold T, we extract the phases that have been 

identified. We refer to phase_seti,t as a set of phases that have been uncovered with a 

chunk size equals to i and a threshold T equals t. Once all possible phase sets are 

identified (this is done automatically by simply applying the phase detection algorithm 

presented earlier), we measure the similarity between the phases contained in each set. A 

good phase set should be the one where the phases are most distinct from each other. This 

is based on the definition of an execution phase where an execution phase should 

represent a particular computation of the traced scenario. Therefore, the extracted phases 

should be as dissimilar as possible. We acknowledge that they will always contain some 

common components such as utilities, but there should also be components that are only 

proper to each phase. A better approach might require automatic removal of utilities 

using techniques such as the ones presented by Hamou-Lhadj et al. [Hamou-Lhadj 06]. 

To measure similarity between phases, we propose the concept of general similarity 

estimation (GSim) which is obtained by computing the average of the similarities 

between all the individual phases. We have developed a similarity metric which measures 
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the commonality between two phases based on the distinct methods they have. Our 

general similarity estimation is computed as follows: 

1. We first measure the similarity between every pair of phases in phase_seti,t 

2. The general similarity is then the average of the similarities measure in (1) 

To measure the similarity between every pair of phases, we simply divide the number of 

distinct methods that are common between the two phases to the total number of distinct 

methods contained in both the phases. For instance, consider that the number of phases 

that is detected in a trace is three P1, P2, and P3. We also refer to number of distinct 

methods contained in a phase as DM (Phase), then the general similarity of these phases 

is computed as follows: 

Sim12 =  

Sim13 =  

Sim23 =  

GSim =  
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In the above equations, DM(P1) and DM(P2) are the number of distinct methods 

contained in Phases 1 and phase 2 respectively. Therefore, Sim12 is the fraction of number 

of distinct methods present in Phases 1 and 2 over the total number of distinct methods 

that are contained in both the phases. Likewise, the similarities between Phase 1 and 

Phase 3, Phase 2 and Phase 3 are also computed. Once we have the individual similarities 

between all the three phases, the next step is to calculate the general similarity which is 

basically the average of all the previously computed individual similarities.  

The lower percentage of general similarity indicates that the individual similarities 

between the phases are quite low as they have a few methods in common and hence they 

are more distinct to each other.  

A more generalised formula of the general similarity is shown as follows: 

GSim =  

 

Where,   

Sim12 =  

Sim23 =  
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Once the general similarity is computed for all possible phase sets (by varying the chunk 

size and the threshold T), we need to select the phase set with the minimum general 

similarity (meaning that most phases are distinct from each other). However, the issue is 

that there may be many phase sets that have low similarity. To select the best possible 

phase set, we apply another similarity metric to measure the changes that appear as one 

goes from one phase to another. In other words, we need to look into how continuous 

phases vary. We call this the measure of consecutive similarity.  

The difference between general similarity and consecutive similarity is illustrated in 

Figure 3.8. 
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(a) General Similarity    (b) Consecutive Similarity 

 

Figure 3.8 The difference between general and consecutive similarity 

 

To measure the consecutive similarity in the set phase_seti,t, we simply compute the 

summation of similarities (   between the consecutive phases and compute the 

average ( ). The phase_seti,t with the lowest average value is the one that indicates 

that the detected phases are highly disassociated from each other.  

The equations for computing the consecutive similarity are shown in what follows: 

The brackets between 

phases represent 

similarity comparison 

between them 

Phase 1 

Phase 2 

Phase 3                

. 

. 

. 

Phase N 

Phase 1 

Phase 2 

Phase 3                

. 

. 

. 

Phase N 
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The lowest value of the consecutive similarity indicates the best phase set (including the 

chunk size and threshold T). The next step of our process is to validate the phases by 

looking at the traced scenario and how the phases reflect various computations. We show 

the effectiveness of the approach in Chapter 4.  

3.3 Summary 

In this chapter, we presented our approach of detecting and locating the execution phases 

that constitute a trace. The objective is to simplify the analysis of large execution traces. 

The approach is primarily composed of two consequent steps: Phase change detection 

and phase shift location. The main purpose of phase change detection is to determine if 

the methods implementing a particular phase which appear frequently have started to 

disappear with the invocation of newly introduced methods, indicating the beginning of 

another phase. Once a phase change is detected we locate where exactly in the trace the 

more frequent methods, that constitute one phase, start to fade, using the phase shift 

location.  
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After locating all the phases in an execution trace, we introduced a concept of general and 

consecutive similarities to estimate the best combination of chunk size and threshold that 

can produce adequate phases.  
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Chapter 4 Evaluation 

 

  

In this chapter, we present a case study to evaluate the applicability and effectiveness of 

our phase detection approach by applying it to a trace generated from the execution of an 

object-oriented software system.  

This chapter is organized as follows: the next section describes the target system that will 

be instrumented for the trace generation process. In Section 4.2, we present the usage 

scenario chosen to generate the execution trace. In Section 4.3, we show the evaluation 

process of applying our phase detection algorithm on the execution trace. The 

quantitative and the qualitative results of this case study are presented in the subsections 

of Section 4.3. A summary of our findings is presented in Section 4.4. 

4.1 Target Systems 

We have applied the proposed phase detection algorithm to a trace generated from a 

software system called JHotDraw (version 5.2). JHotDraw is open source software and a 

well known Graphical User Interface framework implemented in Java for technical and 

structural graphics [JHotDraw 5.2]. It consists of 9 packages, 148 classes and 1963 

methods. JHotDraw 5.2 has 17,819 lines of code. 
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We selected the JHotDraw software system because it is well documented. JHotDraw 

packages and classes are documented and the detailed description of the architecture can 

be found on a website dedicated to the tool [JHotDraw 5.2]. The availability of this 

documentation helped validate the results obtained by using our approach. 

4.2 Usage Scenario 

In order to generate the execution traces, the target software system JHotDraw was 

instrumented using an Eclipse plug-in called TPTP (the Eclipse Test and Performance 

Tool Platform Project). TPTP is an open source platform which allows the software 

developers to build test and performance tools. The detailed description of this tool can 

be found on the website and the entire information of the plug-in and its download is 

provided on [Eclipse TPTP]. To instrument the system, the probes were inserted at each 

method entry and method exit of the source code. The scenario we selected to exercise 

JHotDraw consisted of a variety of drawing and animation features. The execution trace 

obtained as a result of executing the above scenario contained approximately 43962 

routine calls (since we needed two events to generate a routine call, the trace size in terms 

of events was 87924 events). However, this trace contained a lot of noise such as mouse 

movements, get and set methods etc. For more precise results, we filtered these utilities to 

obtain a trace which was much cleaner. The resulting trace after removing noise consisted 

of 16261 routine calls.  
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4.3 Applying the Phase Detection Algorithm 

In the JHotDraw execution trace which is chosen for our case study, the total number of 

distinct methods was 370. So we varied the chunk size from 1 to 370 with an interval of 

10 and the threshold T was varied from 0% to 100% again with an interval of 10%. In 

order to detect a phase change, the methods in the current snapshot of working set were 

compared with the methods contained in the original snapshot of the working set. If less 

than a certain threshold of the methods of the original working set appeared in the current 

working set, then this suggests that a phase change had taken place as described in the 

previous chapter. Table 4.1 shows the results of applying the phase detection algorithm 

by varying the chunk size and the threshold T. The rows represent the chunk size and the 

columns represent the threshold. The cells contain the number of phased that have been 

detected and the result of the general similarity. For example, when the chunk size is 10 

and the threshold T = 10%, we obtain 805 phases (meaning that phase_set10,10 contains 

805 phases) and a general similarity of 24%.  

Table 4.1 Phase_setsi,t and general similarity for all chunk sizes and thresholds 

 
T/ 

Chunk 

Size 

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

10 805 

(24%) 

813 

(23%) 

814 

(23%) 

814 

(23%) 

814 

(23%) 

814 

(23%) 

814 

(23%) 

814 

(23%) 

814 

(23%) 

814 

(23%) 

20 359 

(45%) 

404 

(41%) 

405 

(41%) 

407 

(41%) 

407 

(41%) 

407 

(41%) 

407 

(41%) 

407 

(41%) 

407 

(41%) 

407 

(41%) 

30 265 

(65%) 

268 

(64%) 

270 

(62%) 

271 

(62%) 

271 

(62%) 

272 

(62%) 

272 

(62%) 

272 

(62%) 

272 

(62%) 

272 

(62%) 

40 16 

(24%) 

197 

(86%) 

202 

(82%) 

203 

(81%) 

203 

(81%) 

204 

(81%) 

204 

(81%) 

204 

(81%) 

204 

(81%) 

204 

(81%) 

50 9 

(26%) 

159 

(85%) 

161 

(83%) 

162 

(82%) 

162 

(82%) 

162 

(82%) 

163 

(81%) 

163 

(81%) 

163 

(81%) 

163 

(81%) 
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60 3 

(17%) 

132 

(86%) 

134 

(84%) 

135 

(83%) 

135 

(83%) 

135 

(83%) 

136 

(82%) 

136 

(82%) 

136 

(82%) 

136 

(82%) 

70 2 

(17%) 

12 

(28%) 

114 

(85%) 

116 

(82%) 

116 

(82%) 

116 

(82%) 

116 

(82%) 

117 

(81%) 

117 

(81%) 

117 

(81%) 

80 2 

(16%) 

9 

(25%) 

100 

(84%) 

101 

(83%) 

102 

(82%) 

102 

(82%) 

102 

(82%) 

102 

(81%) 

102 

(81%) 

102 

(81%) 

90 2 

(16%) 

5 

(22%) 

90 

(83%) 

90 

(83%) 

90 

(82%) 

90 

(82%) 

90 

(82%) 

91 

(81%) 

91 

(81%) 

91 

(81%) 

100 2 

(16%) 

4 

(25%) 

9 

(26%) 

81 

(82%) 

81 

(82%) 

81 

(82%) 

81 

(82%) 

82 

(80%) 

82 

(80%) 

82 

(80%) 

110 2 

(16%) 

3 

(21%) 

8 

(25%) 

73 

(83% 

73 

(84%) 

74 

(81%) 

74 

(81%) 

74 

(81%) 

74 

(81%) 

74 

(81%) 

120 2 

(15%) 

2 

(20%) 

7 

(23%) 

67 

(83%) 

68 

(81%) 

68 

(81%) 

68 

(81%) 

68 

(81%) 

68 

(81%) 

68 

(81%) 

130 2 

(15%) 

2 

(19%) 

5 

(17%) 

8 

(26%) 

63 

(81%) 

63 

(81%) 

63 

(81%) 

63 

(81%) 

63 

(81%) 

63 

(81%) 

140 2 

(14%) 

2 

(19%) 

4 

(11%) 

7 

(23 %) 

58 

(82%) 

58 

(82%) 

58 

(82%) 

59 

(79%) 

59 

(79%) 

59 

(79%) 

150 2 

(14%) 

2 

(18%) 

3 

(6 %) 

6 

(23%) 

54 

(82%) 

54 

(82%) 

54 

(82%) 

55 

(79%) 

55 

(79%) 

55 

(79%) 

160 2 

(14%) 

2 

(18%) 

3  

(9%) 

5 

(20%) 

6 

(13%) 

51 

(81%) 

51 

(81%) 

51 

(80 %) 

51 

(80%) 

51 

(80%) 

170 2 

(14%) 

2 

(18%) 

3  

(4%) 

4 

(11%) 

6 

(18%) 

48 

(80%) 

48 

(81 %) 

48 

(81%) 

48 

(81%) 

48 

(81%) 

180 2 

(14%) 

2 

18%) 

2 

(5%) 

3 

(4%) 

5 

(12%) 

45 

(82%) 

45 

(82%) 

46 

(79%) 

46 

(79%) 

46 

(79%) 

190 2 

(14%) 

2 

(18%) 

2 

(8%) 

3 

(4%) 

5 

(12%) 

6 

(15%) 

43 

(80%) 

43 

(80%) 

43 

(80%) 

43 

(80%) 

200 2 

(13%) 

2 

(19%) 

2 

(7 %) 

3  

(4 %) 

4 

(11%) 

5 

(13%) 

41 

(80%) 

41 

(79%) 

41 

(79 %) 

41 

(79%) 

210 2 

(13%) 

2 

(19%) 

2 

(8%) 

3 

 (3%) 

4 

(12%) 

5 

(12%) 

39 

(79%) 

39 

(79%) 

39 

(79%) 

39 

(79%) 

220 2 

(13%) 

2 

(20%) 

2 

(7%) 

3 

(4%) 

3 

(5%) 

5 

(13%) 

37 

(81%) 

37 

(80%) 

37 

(80%) 

37 

(80%) 

230 2 

(13%) 

2 

(18%) 

2 

(7 %) 

2 

(4%) 

3 

(5%) 

3 

(4 %) 

5 

(14 %) 

35 

(82%) 

36 

(78%) 

36 

(78%) 

240 2 

(13%) 

2 

(18%) 

2 

(7%) 

2 

(4%) 

3 

(5%) 

3 

(4%) 

5 

(14%) 

34 

(80%) 

34 

(80%) 

34 

(80%) 

250 2 

(14%) 

2 

(17%) 

2 

(6%) 

2 

(5%) 

3 

(5%) 

3 

(4%) 

5 

(16%) 

33 

(78 %) 

33 

(78%) 

33 

(78%) 

260 2 

(13%) 

2 

(15%) 

2 

(6%) 

2 

(4%) 

3 

(6%) 

3 

(4%) 

5 

(12%) 

5 

(12%) 

32 

(78 %) 

32 

(78 %) 

270 2 

(15%) 

2 

(14%) 

2 

(5 %) 

2 

(4 %) 

2 

(5%) 

3 

(3%) 

3 

(4 %) 

5 

(13%) 

31 

(77%) 

31 

(77%) 

280 2 

(14%) 

2 

(13%) 

2 

(5%) 

2 

(4 %) 

2 

(5%) 

2 

(4%) 

3 

(4%) 

5 

(13%) 

30 

(76%) 

30 

(76%) 

290 - 2 

(13%) 

2 

(6%) 

2 

(4%) 

2 

(6%) 

2 

(5%) 

3 

(4%) 

5 

(13%) 

5 

(13%) 

29 

(76%) 

300 - 2 

(0%) 

2 

(5%) 

2 

(4%) 

2 

(5%) 

2 

(5% 

3 

(5%) 

4 

(11%) 

5 

(13%) 

28 

(75%) 

310 - 2 

(0%) 

2 

(4 %) 

2 

(3%) 

2 

(4%) 

2 

(0%) 

3 

(0%) 

3 

(5%) 

5 

(12%) 

27 

(75%) 

320 - 2 

(0%) 

2 

(2%) 

2 

(3%) 

2 

(3%) 

2 

(5%) 

2 

(4%) 

3 

(4 %) 

4 

(6%) 

5 

(10%) 

330 - - 2 2 2 2 2 3 4 5 



 
 

53 

(0%) (3%) (3%) (4%) (3%) (0%) (8 %) (13%) 

340 - - 2 

(1%) 

2 

(0%) 

2 

(3%) 

2 

(4%) 

2 

(3%) 

2 

(4%) 

3 

(0%) 

4 

(12%) 

350 - - 2 

(1 %) 

2 

(0%) 

2 

(3%) 

2 

(3%) 

2 

(2%) 

2 

(2%) 

3 

(0 %) 

4 

(14%) 

360 - - - 2 

(1%) 

2 

(1%) 

2 

(2%) 

2 

(2%) 

2 

(1%) 

3 

(0%) 

4 

(13%) 

370 - - - 2 

(1%) 

2 

(2 %) 

2 

(2%) 

2 

(3%) 

2 

(2%) 

3 

(0%) 

3 

(0%) 

 

In the above table, we can notice several phase_setsi,t with lower general similarities 

containing only 2 to 3 phases. When we analyzed the content of the trace, we found that 

the resulting phases divide the trace into very high-level computations. For instance, 

when the chunk size is set to 360 and the threshold is set to 90%, the total number of 

phases detected in the trace is two. These are located at the chunk numbers 1 and 41, 

which means that these phase shift locations are dividing the trace into three major 

phases: the initialization phase containing the first 360 methods, which is followed by 

two major computational phases, one of them starting from approximately the 361
st
 

method to 14,760
th

 method and the other computational phase starting from 

approximately the 14,761
st
 method till the end of the trace.  Although these phases can 

provide a high-level understanding of where the major phases occur, we do not think that 

they are sufficient to understand the content of a trace since a software engineer will most 

likely want to know more about what goes on in each phase. Therefore, there is a need to 

investigate other phase sets. 

The graph in Figure 4.1 shows that the phase sets that were identified can be grouped into 

two large clusters (with a few exceptions) based on the general similarity measure. The x-
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axis represents the general similarity (in percentage) and the y-axis represents the number 

of phases in a phase_seti,t.  

 

Figure 4.1  Phase_Sets and corresponding general similarities for the 

JHotDraw trace 

 

The first cluster contains the phase_sets with a general similarity less that approximately 

30% whereas the second cluster of phase_sets with general similarities more than 

approximately 70%. It should further be noticed in the graph that the cluster of 
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phase_sets with more than 70% general similarities have the number of phases higher 

than one hundred which is less feasible for a trace generated simply by executing only a 

couple of features. Furthermore, we are interested in considering the cases with lower 

percentage of general similarities. Hence, the first cluster with the entries less than 30% 

general similarities is selected for further study. For more optimisation, we short list this 

cluster and select the phase_sets of general similarities less than 15%. 

Once we have the phase_sets of lower values of general similarities, the objective now is 

to find the phase_set in which the consecutive similarity between its phases is the lowest. 

Therefore, our next step will be to find the consecutive similarities between all phases of 

each phase_set with less than 15% general similarity. Table 4.2 shows all the phase_sets 

and consecutive similarities between the phases contained in them. 
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Table 4.2 Phase_sets and consecutive similarities for the JHotDraw trace 

 

Chunk Size 

(i) 

Threshold (t) 

(in 

percentage) 

Phase_Seti,t 

(PS) 

Summation of 

Consecutive 

Similarities (S) 

Average of 

Consecutive 

Similarities 

(S/PS) 

130 30 5 68.660 13% 

140 30 4 52.863 13% 

170 40 4 53.204 13% 

180 50 5 55.099 11% 

190 50 5 58.761 11% 

190 60 6 66.438 11% 

200 50 4 53.966 13% 

200 60 5 60.719 12% 

210 50 4 56.624 14% 

210 60 5 59.243 11% 

220 60 5 58.692 11% 

230 70 5 61.789 12% 

250 70 5 73.585 14% 

260 70,80 5 58.760 11% 

270 80 5 59.882 11% 

280 80 5 59.882 11% 

290 80,90 5 59.882 11% 

300 80 4 54.647 13% 

300 90 5 60.719 12% 

310 90 5 58.245 11% 

320 100 5 51.055 10% 

330 100 5 63.221 12% 

340 100 4 58.358 14% 

350 100 4 61.019 15% 

360 100 4 55.168 13% 
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From the table, we can see that among all the phase sets, the phase_seti,t with lowest 

average consecutive similarity percentage is the one with chunk size i = 320 and 

threshold t = 100%. Therefore, it can be concluded that this phase_set320,100 contains the 

phases that are highly distinct from each other. The five phases (four phase shift 

locations) contained in the phase_set320,100 represent the chunk numbers where most of 

the previously occurring methods started to fade and new methods started to get invoked. 

The chunk numbers or the phase shift locations for the phase_set320,100 with lowest 

consecutive similarity are 1, 3, 47 and 49. The following table shows the routine calls 

counter after which the phases are located. 

Table 4.3 Phase shift locations and corresponding routine calls 

Phase Shift Location/ 

Chunk Number (PSL) 

Chunk Size (CS) Routine calls after which a 

phase is detected in the 

trace(RC = PSL * CS) 

 

1 320 320 

3 320 960 

47 320 15040 

49 320 15680 

 

We can conclude that the concept of consecutive similarity estimation highly supported 

our phase detection approach in identifying the chunk size and threshold that are best to 
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detecting the phases in our trace.  The following figure 4.2 represents the phase shift 

locations detected automatically by our algorithm in the JHotDraw trace obtained by 

exercising the scenario under consideration. 

 0

320

960

15040

15680

Initialization Phase which involves creating, 

preparing and activating a new sheet

Select and Draw the Elipse Figure

Perform Animation on the previously drawn 

Ellipse Figure

Save the File on the System

Insert an Image

and

Exit the Application

P1 (chunk 1)

P2 (chunk 3)

P3 (chunk 47)

P4 (chunk 49)

16261

 Call 

counter

 

Figure 4.2 The execution phases in JHotDraw trace 

 

The call counter represents the method calls that are responsible for implementing the 

consequent features. It should be noticed that the first phase, which is the initialization 

phase, is smaller as compared to the rest of the phases. This is because the trace has been 

pre-processed and the utilities, such as get and set methods and mouse movements, have 

been removed those of which constitute a major portion of the initialization phase. The 
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solid lines in the figure represent the phase shift locations obtained by applying our 

algorithm on the corresponding execution trace. The phases after the initialization phase 

represent part of the trace which is responsible for drawing figures and performing other 

features. Each one of these phases contains a set of minor activities which include 

selecting the button of the figure, drawing the figure and unselecting the button. The last 

phase contains methods when the application terminates. In JHotDraw software system 

the finalization phase is extremely smaller and is difficult to locate, therefore, this 

finalization phase is merged with most commonly the last feature executed in the 

computational phase. In our case, the last feature of the scenario is inserting a figure, so 

the finalization phase which is approximately the last ten routine calls of the trace is 

merged with the inserting a figure feature. 

To validate our results, we studied the content of the trace manually and compared the 

extracted phases with the ones that actually exist in the trace. We used JHotDraw 

documentation to understand the role of the invoked methods. We found that our phases 

match the manually detected phases, which shows the effectiveness of our algorithm. The 

methods that were responsible of the various features are listed in Table 4.4. Our phase 

detection algorithm was successful in putting these methods in each separate phase.  
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Table 4.4 Methods in JHotDraw source code and their responsibilities 

Feature Method Name Responsibility 

Ellipse CH.ifa.draw.figures.Rectan

gleFigure.basicDisplayBox 

Sets the basic display box for figures to 

be drawn. 

Animation 

on Ellipse 

CH.ifa.draw.samples.javadr

aw.JavaDrawApp.startAnimat

ion 

Starts the animation of the figure. 

Save As CH.ifa.draw.application.Dr

awApplication.promptSaveAs 

Shows a file dialog and saves drawing. 

Insert 

Image 

CH.ifa.draw.insertImageCom

mand.execute, 

CH.ifa.draw.util.Iconkit.r

egisterImage,CH.ifa.draw.u

til.Iconkit.loadImage 

Constructs an insert image command, 

registers the URL for the image source, 

loads an image file with the given name, 

caches it, and optionally waits for it to 

finish loading. 

Exit 

Application 

CH.ifa.draw.application.Dr

awApplication.exit 

 

Exits the application. 

4.4  Discussion  

The overall results obtained by applying our phase detection algorithm on the real data 

reveal that our proposed approach is very effective in detecting execution phases in large 

traces.  The target software system that we used to test our algorithm is JHotDraw 5.2 
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which is a well documented open source software system. We chose a scenario that 

generated a trace of tens of thousands of calls. We were able to divide the trace into 

meaningful phases, which reflect the high-level computations invoked in the traces. 

Several phases have been identified by varying the chunk size and the threshold T. One 

of the challenges is to explore this large set. We had to focus on the phase sets cluster 

with low generality similarity since these are the sets that contain phases that are most 

distinct from each other. However, even with this, we were left with still a large set of 

phases. The consecutive similarity helped reduce this set to a more manageable set of 

phases from which we were able to identify the proper setting of the chunk size and 

threshold that best reveal adequate phases. 

In practice and for more complex traces, we expect that the exploration of all possible 

phases might turn to be a challenging task. We recognize that more work needs to be 

done in this direction as we will describe in the last chapter of this thesis. 
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Chapter 5 Conclusion  

 

 

5.1  Research Contributions  

In this dissertation, we presented a novel approach for trace simplification which consists 

of dividing an execution trace into execution phases that represent the key computations 

contained in a trace. Our algorithm is based on the idea that a phase consists of methods 

that start to fade in the trace when a new phase starts to emerge. Using this algorithm, we 

believe that the software engineers can get a deep insight of what is happening inside the 

program without wasting time in understanding the content of overwhelmingly large and 

complex traces.  

In particular, the algorithm contains two main steps: the phase detection and phase 

location steps. The objective of detecting a phase change is to identify when and where 

the methods which are responsible for implementing one phase of a program begin to 

fade, simultaneously causing the emergence of new methods which are responsible for 

implementing another phase. In order to detect a phase change, the collection of distinct 

methods of the program is captured into working sets, which were updated while the 

program executes. The objective was to detect when the most frequent methods become 

less frequent, which means that new ones are taking place. 
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For locating the execution phases once a phase is detected, we proceed by identifying the 

chunk from which many methods start to fade. We collect all the distinct methods from 

the chunks that comprise each phase. After performing a certain number of computations 

on these methods, the exact location of phase shift is determined.  

Our algorithm relies on the chunk size and threshold used to compare working sets, 

another contribution of this thesis is a way to determine the best chunk size and threshold. 

In particular, we presented a concept of computing the similarity between execution 

phases which measure the degree by which the identified phases are from each other. The 

general similarity is a cumulative similarity of the individual similarities between all the 

execution phases for different sets of chunk sizes and thresholds. A high percentage of 

general similarity indicates that the phases are highly similar to each other and vice-versa. 

Another concept we introduced was the concept of finding the similarity between 

consecutive phases which is much more relevant in terms of phase distinction.  

Finally, we applied our techniques to a trace generated from an object-oriented system. 

We validate the results using the system documentation. Our approach was capable of 

successfully detecting the phases in the generated trace  

5.2  Opportunities for Further Research 

Several future research directions are needed. First, we need to continue experimenting 

on different software systems to further assess the effectiveness of our approach.  In 

addition, we need to improve the performance of the algorithm since it requires 
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computing phases for each chunk size and threshold. What we need is to find ways to 

suggest adequate parameters without having to explore the range of all possible value. A 

heuristic-based approach is needed. 

We also need to apply our techniques to other types of traces such statement-level traces, 

which are considerably larger than routine call traces. We also need to compare our result 

with existing trace abstraction techniques, and perhaps combine these different trace 

abstraction methods together. Finally, we need to work with software engineers to assess 

the value of our approach in practice. We anticipate that this can be done if the proposed 

algorithm is supported by a trace analysis tool.  

5.3 Closing Remarks  

Understanding the behaviour of a software system is a crucial task for many software 

engineering activities. To understand the behaviour of the system, however, one needs to 

process large traces; this is often a very tedious task. Several trace abstraction techniques 

have been proposed but the general consensus is that more research in the area is much 

needed to solve the trace analysis problem. We hope the work presented in this thesis can 

contribute to alleviate this problem. 
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