
Assembly Language Macros
• Most assemblers include support for macros. The term macro refers to

a word that stands for an entire group of instructions.

• Macro is a text substitution facility

• It allows programmer to define their own opcodes and also operands

move.w X,d0

muls d0,d0 sqr

move.w d0,X

• Inline subroutines

– Avoids overhead of subroutine calls (jsr, rts)

– Faster than subroutine

• Code is generated when macro is actually used

• Additional code is generated during each macro call

Differences Between Macros and Subroutines

• Both permit a group of instructions to be defined as a single entity

with a unique given label or name called up when needed.

• A subroutine is called by the BSR or JSR instructions, while a

macro is called by simply using its name.

• Simpler to write and use (subroutines are more complex, stacks are

used)

• Macros are faster than subroutines (no overheads, no saving of

return addresses)

Differences Between Macros and Subroutines

• Macros are not a substitute for subroutines:

– Since the macro is substituted with the code and

additional code is generated every time a macro is

called, very long macros that are used many times

in a program will result in an enormous expansion

of the code size

• Wastage of storage due to multiple copies

– In this case, a subroutine would be a better choice,

since the code in the body of the subroutine is not

inserted into source code many when called.

• Support for subroutines is provided by the CPU --here, the 68000--

as part of the instruction set, while support for macros is part of the

assembler (similar to assembler directives).

Assembly Language Macros
• Using macros in an assembly program involves two steps:

1 Defining a macro:

The definition of a macro consists of three parts: the

header, body, and terminator:

<label> MACRO The header

. . . . The body: instructions to be executed

ENDM The terminator

Example: sqr macro

move X,d0

muls d0,d0

move d0,X

endm

Assembly Language Macros
• Using macros in an assembly program involves two steps:

2 Invoking a macro by using its given <label> on a

separate line followed by the list of parameters used if

any:

<label> [parameter list]

When macro is called it is replaced by the body of the

macro

Parameters – order of parameters is important

A Macro Example
AddMul MACRO Macro definition

ADD.B #7,D0 D0 = D0 + 7

AND.W #00FF,D0 Mask D0 to a byte

MULU #12,D0 D0 = D0 x 12

ENDM End of macro def.

MOVE.B X,D0 Get X

AddMul Call the macro

. . .

MOVE.B Y,D0 Get Y

AddMul Call the macro

Defining the macro:

Invoking the macro:

Macros and Parameters
• A macro parameter is designated within the body of the macro by

a backslash "\" followed by a single digit or capital letter:

\1,\2,\3 . . . \A,\B,\C ... \Z

• Thus, up to 35 different, substitutable arguments may used in the

body of a macro definition.

• The enumerated sequence corresponds to the sequence of

parameters passed on invocation.

– The first parameter corresponds to \1 and the 10th parameter

corresponds to \A.

– At the time of invocation, these arguments are replaced by the

parameters given in the parameter list.

– If less number of operands than in the body of macro, null string is

assigned to the excess operands in body

Macro Example with

Parameter Substitution
AddMul MACRO Macro definition

ADD.B #7,\1 Reg = Reg + 7

AND.W #00FF,\1 Mask Reg to a byte

MULU #12,\1 Reg = Reg x 12

ENDM End of macro def.

MOVE.B X,D0 Get X

AddMul D0 Call the macro

. . .

MOVE.B Y,D1 Get Y

AddMul D1 Call the macro

Defining the macro:

Invoking the macro:

Another Macro Example with

Parameter Substitution
Add3 MACRO Macro definition

move.l \1, \4

add.l \2, \4

add.l \3, \4

ENDM End of macro def.

Add3 D2,D5,D6,D0 Call the macro

move.l D2,D0

add.l D5,D0 macro expansion

add.l D6,D0

Add3 #2,D2,D3,D7 Call the macro

move.l #2,D7

add.l D2,D7 macro expansion

add.l D3,D7

Defining the macro:

Invoking the macro:

Labels Within Macros
• Since a macro may be invoked multiple times within the

same program, it is essential that there are no conflicting

labels result from the multiple invocation.

BusyWait macro

movem.l d0-d1, -(a7)

outer move.w \1, d1

move.w #$FFFF, d0

inner dbra d0, inner

dbra d1, outer

movem.l (a7)+, d0-d1

endm

If macro in invoked more than once, it will lead to multiple declaration
of symbols outer and inner

Labels Within Macros
• Multiple invocation problem can be corrected by using two

local symbols and two extra parameters

BusyWait macro

movem.l d0-d1, -(a7)

\3 move.w \1, d1

move.w #$FFFF, d0

\2 dbra d0, \2

dbra d1, \3

movem.l (a7)+, d0-d1

endm

To invoke the macro, a new set of parameters should be provided.

BusyWait x, outer1, inner1

BusyWait x, outer2, inner2

BusyWait x, outer3, inner3

Labels Within Macros
• Instead of keeping track of the labels generated, the special

designator "\@" is used to request unique labels from the

assembler macro preprocessor.

• For each macro invocation, the "\@" designator is replaced

by a number unique to that particular invocation. It is

replaced by .nnn (number of macro expansions that have

already occurred)

• The "\@" is appended to the end of a label.

Labels Within Macros

BusyWait macro

movem.l d0-d1, -(a7)

outer\@ move.w \1, d1

move.w #$FFFF, d0

inner\@ dbra d0, inner\@

dbra d1, outer\@

movem.l (a7)+, d0-d1

endm

If macro in invoked more than once:

– first invocation will replace it with outer.001 and inner.001

– second invocation will replace it with outer.002 and inner.002

Internal Macro Label Example
Macro SUM adds the sequence of integers in the range: i, i+1, …., n

Macro Definition:

SUM MACRO \1 = start \2 = stop \3 = sum

CLR.W \3 sum = 0

ADDQ.W #1,\2 stop = stop +1

SUM1\@ ADD.W \1,\3 For i = start to stop
ADD.W #1,\1 sum = sum + i

CMP.W \1,\2

BNE SUM1\@

ENDM

Sample macro SUM invocation:

SUM D1,D2,D3 D1 = start D2 = stop D3 = sum

Macro Example:

ToUpper, A String Conversion Macro
* ToUpper Address-Register

* This macro converts a string from lower case to upper case.

* The argument is an address register. The string MUST be

* terminated with $0

*

ToUpper macro

convert\@ cmpi.b #0,(\1) test for end of string

beq done\@

cmpi.b #'a',(\1) if < 'a' not lower case

blt increment\@

cmpi.b #'z',(\1) if <= 'z' is a lower case

ble process\@

increment\@ adda.w #1,\1

bra convert\@

process\@ subi.b #32,(\1)+ convert to upper case

bra convert\@

done\@ NOP

endm End of macro

