Passing Parameters

Data passed to a subroutine is called a parameter.
There are two classes of parameters:
- in (call by value)

e Original data does not change
* Copy of original data is used by subroutine
* Copy may be modified

- in-out (call by reference)

e Original data can be modified
* Location of data is passed

Parameters are passed using:

e Registers (data registers used to pass by value)

* Parameter (Memory) block (address register used to pass address of the block)
* Block may be just one location or a block of memory locations

 Stack (stack can be both used to pass by value, or by reference)

Passing Parameters

Calling Program

move N,R1 ;R1 serves as a counter — used to pass by value

move #NUM1,R2 ; R2 points to the list — used to pass by reference
» address of the first number on the list

Call LISTADD : call the subroutine

move RO,SUM; save result

Subroutine

LISTADD Clear RO s initialize sum to zero

LOOP Add (R2)+,R0O ; Add entry from list
Decrement R1
Branch >0 LOOP
Return

(Fig 2.25 of Hamacher)

Example: Power Calculation Subroutine

* A subroutine is needed which aécepts tWO-integers as input parameters:

— abase, B (a signed integer), Size = one byte (range: -128 <B < 127)
— an exponent E (a positive integer) Size = one byte,

— and, compute the function BE size of answer =long word

Functional specification (pseudo code) of subroutine POWER:

POWER (B, E)
D1 =B f ;input arguments, base
D2 =E ;exponent, a positive integer
initialize D3 to 1 | sanswer initialized to 1
while D2 >0
D3 = D1*D3 ~_ j;compute function using
D2=D2 -1; | scontinued product of base
end POWER |

Return to calling program

Basic Flow Chart of Power

Subroutine
POWER | Start Point Effect on The Stack
D1 = base | < Word >
D2 = exponent
D3=1
~ SP during
- . subroutine — | Return
D3 =D3 * D1 address
¥ {nit(ilal fSP —

and after
DZ =b2 -1 return from

subroutine)

. Return to

" calling program

POWER: Four Parameter Passing Cases

* We’ll examine four assembly versions of the subroutine
POWER and sample Main programs that calls it.

 Each version uses a different parameter passing method:

— Case 1: Parameter passing by value, using data registers.

— Case 2: Parameter passing by reference, using address
| registers. |

— Case 3: Parameter passing by value, using the stack.

— Case 4: Parameter Passing by reference, using the stack

£

S
3
7

B
E
A

POWER Subro‘vlul_'tin‘e Example (Case 1)

MAIN ORG
MOVEA.L

MOVE.B
EXT.W
CLR.W

“MOVE.B

Y
?\}\”\

BSR

LEA
MOVEL.L

MOVE
TRAP
ORG
DC.B
DC.B
DS.L

Parameter Passing by Valué:_ Using Data Registers

- Main Program -

$400 Main Program origin
#$07FFE,SP Initialize Stack Pointer

B.D1 Put base number into D1

D1 Sign extend base to word length
D2 Clear D2 before loading exponent
E,D2 Put exponent number into D2
POWER Call subroutine POWER

ALAS put address of answer into A5
D3,(AS) save answer

#228,D7 Done

#14

$600

4 Base number stored here

2 Exponent number stored here

1 answer to be stored here

POWER Subroutine Example (Case 1)

Parameter Passing by Value: Using Data Registers
Continued - Subroutine

ORG $800 Subroutine POWER origin
POWER MOVE.L #1,D3 ~initialize result to 1
LOOP MULS D1,D3 multiply result with base

SUB #1,D2 decrement power by one

BNE LOOP and repeat as long as power > 0

RTS Done, return to calling program

POWER Subroutine Example (Case 2)

Parameter Passing by Reference: Using Address Registers
- Main Program -

MAIN ORG $400 ~ Main Program origin
MOVEA.L #$07FFE,SP Initialize Stack Pointer
LEA B,Al A1l points to base number
LEA E,A2 A2 points to exponent
BSR POWER Call subroutine POWER
LEA ALAS | put address of answer into AS
MOVE.L D3,(AS5) save answer in memory
MOVE #228,D7 Done
TRAP #14
ORG $600

B DC.B 4 Base number stored here

E DC.B 2 Exponent number stored here

A B

DS.L 1 | answer to be stored here

POWER

LOOP

POWER Subroutine Example (Case 2)

Parameter Passing by Reference: Using Address Registers
Continued - Subroutine

ORG

MOVE.B
EXT.W
CLR.W
MOVE.B
MOVE.L
MULS
SUB
BNE
RTS

$800
(A1),D1
D1

D2
(A2),D2
#1,D3
D1,D3
#1,D2
LOOP

Subroutine POWER origin

copy base number to D1

Sign extend base to word length
Clear D2 before loading exponent
copy exponent to D2

initialize result in D3 to 1
multiply result D3 with base D1
decrement power in D2 by one
and repeat as long as power > (
Done, return to calling program

Example of Passing Parameters by parameter block

; Parameter Blocks have advantage when the number of parameters to be passed is large. If all registers were used for
parameter passing, subroutine will have no registers to work with

;Main Program

main equ *
lea block, a0 ; move address of parameter block to a0
move.| #string, (a0) ; move string address to block
jsr convert ; call subroutine

..... ; result is in the block (four bytes offset)

; end of code

; Subroutine convert

convert equ *
movea.l block, a2 ; copy string pointer to a2
; assume result is in dO
move.w do, 4(a0) ; save the result in the block
rts ; return
; Data area
string ds.b 20 ; storage for string
block ds.| 1 ; first parameter: base address of the string
ds.w 1 ; second parameter: resulted signed integer

end

