
Subroutines

Call suba

Call suba

Call suba

Next instruction

Next instruction

Next instruction

Start of subroutine

Subroutine suba

Jump back

- Only one copy of the code is placed in
memory

- Whenever we wish to use the code, a jump is
made to it

- Jump to address of the first instruction of the
subroutine

- Next instruction address should be saved
before jump to subroutine is made

Figure 8.1 of course package

Subroutine calls and returns
main equ *

;

; first call

;

 move.l #next1, save_return ; save return address

 jmp suba ; jump to subroutine

next1 … …….. ; this is where we continue

 … ……..

;

; second call

;

 move.l #next2, save_return ; save return address

 jmp suba ; jump to subroutine

next2 … …….. ; this is where we continue

 … ……..

;

; third call

;

 move.l #next3, save_return ; save return address

 jmp suba ; jump to subroutine

next3 … …….. ; this is where we continue

;

; Subroutine suba
; suba knows the symbols x and save_return
;

suba equ *
 move.w x,d0
 muls d0,d0
 move.w d0,x
 lea save_return,a0 ;put the correct
 ;return address
 ;into a0
 jmp (a0) ;return

;end of subroutine

save_return ds.l 4 ;storage for return address

Four extra instructions to implement subroutine.
Programmer must explicitly save the return address
before jumping to subroutine

Memory location Calling program Memory location Subroutine SUB

 200 Call SUB 1000 First instruction
 204 next instruction ----
 ---- ----
 ---- Return

Here, address of next instruction must be saved by the Call instruction to enable returning to
Calling program
 1000

 PC

 Link Register

 Call Return

204

204 204

Figure 2.24 [Hamacher] Subroutine linkage using a link register

Note: Link Register is dedicated
to save return address

Nested subroutines

One subroutine calling another

 - if link register is used, its previous contents will be destroyed

 - it is therefore important to save it in some other location

Stack should be used

 - list of similar items arranged in a structure, such that last item added
is the first item removed

 – Last-in-First-out
 - Push an element onto stack

 - Pop an element from stack to remove

 - elements are either word or longwords

Call instruction – push address of next instruction

Return – pop return address

Stack Pointer originally points to the beginning of the block of memory (Fig 8.2)

How to Call Subroutine

Two instructions – jsr, bsr

Jump to subroutine – jsr address (ex. jsr suba)

 operand is the Effective Address (specified as absolute address)

- Longword address of the next instruction is pushed on to the stack

- Stack is implicitly used when calling subroutines

- The EA specified is then used to jump to the subroutine

Equivalent machine instruction is (see Fig 8.3):

 4EB9

 0040

 0100

How to Call Subroutine

Two instructions – jsr, bsr

Branch to subroutine – bsr.b address

 bsr.w address (ex. bsr suba)

Same as jsr, except signed displacement is added to PC

Equivalent machine instruction is (see Fig 8.3):

 (bsr.b) 617E

or

 (bsr.w) 6100

 007E

Machine instruction contains displacement, calculated using:

Target address = PC + 2 + displacement

Return from Subroutine
Two ways – rts, rtr

Return from subroutine – rts

 - top of stack is popped off and loaded into PC

Return and Restore – rtr

 - first pops a word from stack placing its low byte into CCR
 (condition code register)

 - PC is loaded with next two words popped

If “rtr” is used to return, the subroutine should do the following immediately
upon entry to subroutine:

move.w SR, -(SP)

Ex: Calling and Returning from suba
main equ *

;

; code to make call

;

 jsr suba ; first call

next1 …. ……. ; this is where we continue after return

 …. …….

 jsr suba ; second call

next2 …. ……. ; this is where we continue after return

 …. …….

 jsr suba ; third call

next3 …. ……. ; this is where we continue after return

;

; code of subroutine suba, notice that
; suba knows the symbol x
;
suba equ * ;entry point
 move.w x,d0
 muls d0,d0
 move.w d0, x
 rts
;
; end of subroutine

