Memory

- Smallest unit of storage is a Bit
- However, smallest addressable unit is a Byte (8 bits)

```
bit 7
```


- Most computers permit access of memory through words (16 bits, 32 bits or 64 bits)

$\begin{array}{llllllll}7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$
$\begin{array}{llllllll}0 & 1 & 0 & 1 & 1 & 0 & 1 & 1\end{array}$

LSByte

Main Memory

- System Bus connects major computer components - CPU, Memory, I/O

- Main Memory stores both program instructions and data.
- CPU puts the memory location that should be accessed on the address bus with width k, (each wire carries a 1 or a 0). The contents of that location are transferred via the data bus.
- Typically memory addresses will range from 0 to 2^{k} - 1 distinct values
- A 16 bit address $(k=16)$ provides $2^{16}=65536(64 K)$ addressable locations.
- Memory is organized so that a group of n bits are stored or retrieved in a single operation.
- Group of n bits is referred to as a word, and n is called the word length.

Main Memory

- Internally data is always represented in binary, although Hex is more readable

Memory Addressing

- Successive addresses refer to successive byte locations in memory.
- Byte locations have addresses $0,1,2$,
- If word length of the machine is 16 bits, successive words are located at addresses $0,2,4, \ldots$..these even addresses are also called word boundary)
- If word length of the machine is 32 bits (long word), successive words are located at addresses $0,4,8, \ldots$.
- Words must be accessed at their word boundaries, otherwise exception occurs
- Some machines allow long words to be accessed at even addresses - address 0 for bytes at locations 0,1,2,3 - address 2 for bytes at locations 2,3,4,5

Big-Endian and Little-Endian

Big-Endian:

- Lower memory address correspond to MSByte
- Address of word is defined as address of MSByte Little-Endian:
- Lower memory address correspond to LSByte
- Address of word is defined as address of LSByte

Memory Capacity

Capacity (C): number of bytes that can be stored in a memory (KB, MB, GB)

- For Byte Organized memory,

$$
\mathrm{C}=2^{k} \text { bytes }
$$

since there are 2^{k} locations and each location is a byte

- For Word Organized memory,

$$
\mathrm{C}=2^{k} \times 2 \text { bytes }
$$

since there are 2^{k} locations and each location is 2 bytes

- In general, $\mathrm{C}=2^{k} \times \frac{m}{8}$ bytes
- Ex: If $\mathrm{C}=1 \mathrm{MB}=2^{20}$ bytes, what is k for a byte organized memory?

Word Organized Memory

Semicanductor Memory Types

Semicanductor Memory Types				
Memory Type	Category	Erasure	Write Mechanism	Volatility
RAM, Random-access memory	Read-write memory	Electrically	Electrically	
ROM, Read-only memory	Read-only memory	Not possible	Masks	Nonvolatile
PROM, programmable ROM			Electrically	5
EPROM, Erasable PROM	Read-mostly memory	UV light		(
EEPROM, electrically erasable PROM		Electrically		
				建

Component	Hexadecimal address	Address bus									
		10	9	8	7	6	5	4	3	2	1
RAM 1	0000-007F	0	0	0	x	x	x	x	x	x	x
RAM 2	0080-00FF	0	0	1	x	x	X	x	X	x	x
RAM 3	0100-017F	0	1	0	x	X	x	x	X	x	x
RAM 4	0180-01FF	0	1	1	x	X	x	x	X	x	x
ROM	0200-03FF	1	x	x	x	X	x	x	X	x	x

\cdots

