
Machine Language and Assembly Language

• In the following lectures, we will learn:
• How instructions are represented and decoded

• Introduction to different types of Addressing Modes

• Most commonly used assembly instructions

• Writing simple assembly language programs

• Hand assembly – process of converting assembly language program to
machine language

• Other assembly instructions such as Logical instructions

Instruction Format
Reminder: Instruction Interpreter interprets the type of operation, nature of
operands (data or address), and mode (memory or register).

Overall it interprets the mode of addressing.

General format of instruction encoding is:
OP: opcode (4 bits)

dRn: 3 bits of destination register

Om: 3 bits of operation mode or opcode

sMS: 6 bits for source Mode Specification:

 3 bits for mode and 3 bits for register used

Example: Instruction suba a0,a0 encodes into 90C8 in Hex

Here opcode is 1001, which stands for a subtraction

000 stands for destination register used is 0

011 indicates destination register used is an address register with word length

001 000 indicates source mode is 001 (mode 1), and source register used is a0.

OP (4) dRn (3) om (3) sMS (6)

1001 000 011 001 000

Instruction Format
Another Example: Instruction muls d1,d2 encodes into C5C1 in Hex

Here opcode is 1100, which stands for a multiplication

010 stands for destination register used is d2

111 indicates destination register used is always data register

000 001 indicates source mode is 000 (mode 0), and source register used is d1.

By Default: instruction operations are on

least significant word, therefore the two data

are FFFD and 0006. The result of multiplication of two word length data is a

longword, the data (-3) is sign-extended to $FFFF FFFD in a working register, before

being multiplied by $0006.

d1 (source reg) remains unchanged

d2 (destination reg) changes to the result value

1100 010 111 000 001

d1 F348 FFFD = -3

d2 0000 0006 = x 6

d2 FFFF FFEE = - 18

FFFF FFFD = -3

x 0006 = x 6

d2 FFFF FFEE = - 18

Instruction Format

Another Multiplication Example: muls d3,d0

d3 is source register, and d0 is destination register

By Default: instruction operations are on least significant word, therefore the two
data are $0073 and $0295.

The result of multiplication of two word length data is a longword.

Both the data are positive, so no need to sign-extended

d3 (source reg) remains unchanged

d0 (destination reg) changes to the result value

d3 D3AB 0073 = 115

d0 F348 0295 = x 661

d0 0001 28EF = 76015

Effective Address
Recall, the address bus for Motorola 68K is 24 bits.

Therefore, the memory addresses are 24 bits long.

Let the destination be a memory location, and the source be a data register.

The instruction in machine language would look something like below:

If addresses are explicitly defined as part of the machine language, the instruction
becomes too long (2 words instead of 1 word), and accessing the instruction would require
more memory accesses.

Therefore, Effective Address (EA), which is the address of memory location to be accessed,
is not specified in the instruction.

Instead, an address register (requires 3 bits to be specified), which contains the EA is used.
In other words, address register points to the memory location used.

Example: if memory location $0ABCD6 needs to be accessed, then an address register, say
a0, should contain $000ABCD6

Now, if we want to access memory location $0ABCD8, we just need to add 2 to a0, and it
will point to this new location

5-bit opcode 24-bit memory address 3-bit data register

Instruction: using Effective Address
Example: move instruction

From Register to Memory location – Mode 2

move d2, (a0)

() brackets specify the operand is a memory location

Here, EA = [a0], the contents of a0

Suppose a0 = $000ABCD6 (32-bit register)

and d2 = $12345678 (32-bit register)

The above instruction specifies that the

least significant word (lsw) of d2, that is $5678,

is moved (copied) to the memory address specified by a0

000000
000001
000002

0ABCD6
0ABCD7

$56

$78

8 bits

Opcode dRn (3) dmd (3) sMS (6)

0011 000 010 000 010

Another Example: move instruction with displacement
Mode 5

From Memory location to Register

move displ(aj), di

move $4(a0), d3

Equivalent Machine instruction is therefore

Here, EA = [a0] + sign-ext displacement
• sign-extend displacement to 32-bits
• Add to the 32-bit contents of a0
• The low-order 24 bits represent the EA

Suppose a0 = $0000 0008 (32-bit register)

Sign-extended displacement = $0000 0004

Then Effective Address = $0000 000C (consider lower 24-bits)

Assume initially d3 = $12345678 (32-bit register)

The above instruction moves (copies) the contents of the memory address specified by EA to register d3.

After move, d3 = $1234ABCD

000000
000001
000002

00000C
00000D

$AB

$CD

8 bits

opcode dRn dmd sMS S-displ (16-bit)

0011 011 000 101 000 0000 0000 0000 0100

3628

0004

Negative displacement Example

Since displacement can be negative as represented in 2’s complement form

move d3, $FFFC(a0)

If a0 = 0000 0008

EA = 0000 0008 (a0)

+ FFFF FFFC (sign-extended displ)

0000 0004

Therefore, according to the instruction, low-order word of d3 moves to memory
location $000004

a0 and d3 remain unchanged.

Memory-to-memory instruction

move displ(ai), displ(aj)

Here both source and destination have Mode 5.

move 164(a0), 6(a1)

M[a1 + 6] M[a0 + $A4]

0011 dAn 101 101 sAn s-displ d-displ

0011 001 101 101 000 $00A4 $0006

Addressing Modes

The addressing modes that we have seen until now are:

Mode 0: Data Register Direct addressing

Example: move d0, d1

Data size may be byte, word, or longword

Mode 1: Address Register Direct Addressing

Example: move a0, a1

Because address register specified, valid sizes are word, or longword

Mode 2: Address Register Indirect Addressing

Example: move d0, (a1)

Mode 5: Address Register Indirect Addressing with Displacement

Example: move d0, $A(a1)

Displacement size is always a word and sign-extended

Micro-instructions for move d3, 2(a0)
MAR PC

MBR M[MAR]

IR MBR

PC PC + 2

Decode

MBR M[MAR]

MAR A0 + MBR

MBR D3

[MAR] MBR

PC PC + 2

PC points to displacement

Displacement loaded

Effective Address calculated

Source data moved to
memory location given by
Effective Address

PC points to next instr. now

3143

0002

PC

Simple Assembly Language program
We want to add two 16-bit numbers in memory locations provided consecutively (that is
locations X and X+2). Save the result in X+4.

We need to first move the data in location X to a data register, say d1

The instruction is therefore of the format move displ(aj), di

Now, for us the EA = X

Therefore, displ + aj = X If displ = X, then aj = 0

Therefore, our instruction will be move X(a0), d0 with a0 initialized to 0.

movea.l #$0, a0 ; a0 initialized to 0, a0 = 0000 0000

move X(a0), d0 ; d0 = ???? 0004

move X+2(a0), d1 ; d1 = ???? 0106

add d1, d0 ; d0 = ????010A

move d0, X+4(a0)

0004 X

0106 X+2

???? X+4

Example for Mode 5 (with displacement)
Offset (displacement) as a constant

a1

Register a1 is used as the reference point

Offset (displacement in the address register

Add $20(a1),d2

Add $22(a1),d2

Add $24(a1),d2

……

1000

……..

1020

1022

1024

…..

0000 1000 0000 0020a1

The sub-program can be better written as

Add $1000(a1),d2

Add #2, a1

Add $1000(a1),d2

Add #2, a1

Add $1000(a1),d2

…..

1000

1020

1020

1024 …..

N n

….

Num1 First Number

Second Number

…..

Nth Number

LOOP Add (a0), d0

Add #2, a0

Sub #1, d1

BGT LOOP

…..

d1 n

a0 Num1

Another Example for Mode 5

Figure 2.14 from Hamacher book
Figure 2.15 from Hamacher textbook

Example of using both, Offset as a Constant and Offset in the register
N n

LIST Student ID

LIST + 4 Test 1

LIST + 8 Test 2

LIST + 12 Test 3

LIST + 16 Student ID

Test 1

Test 2

Test 3

…...

…..

Move #LIST, R0

Clear R1

Clear R2

Clear R3

Move N, R4

LOOP Add 4(R0), R1

Add 8(R0), R1

Add 12(R0), R1

Add #16, R0

Decrement R4

Branch>0 LOOP

Move R1, SUM1

Move R2, SUM2

Move R3, SUM3

Student 1 Test1 Test2 Test3

Student 2 Test1 Test2 Test3

…..

Student n Test1 Test2 Test3

SUM1 SUM2 SUM3

Offset as a constant

Offset in a register

