
Logical Operations
In some applications it is necessary to manipulate other sizes of data,
or perhaps only individual bits.

There are instructions that perform logical AND, OR, XOR and NOT
operations. The condition code register changes according to the result

AND.w d1,d2 (logically ANDs individual bits of d1 and d2 regs)

ANDi.w #$5FFF, sr (resets trace and supervisor bits)

ANDi.w #$FFFC, d1 (resets two low order bits of d1)

The operations can be extended to byte and longword in a similar way

Logical Operations cont.
OR.w d1,d2 (logically ORs individual bits of d1 and d2 regs)

ORi.l #$F000000F, d0 (sets first four and last four bits of d0)

ORi.l #$80000001, d0 (sets bits 31 and 0 while retaining others)

EORi.b #$35, d1 (selected bits are complemented)

NOT.w d1 (each bit is complemented)

Shift and Rotate Operations
Shift instructions – left or right shift (for bit lengths 8, 16, or 32)

• Arithmetic Shifts (asl, asr)
• If sign of data before shift and after shift are different, overflow bit is set otherwise reset.

• Logical Shifts (lsl, lsr)
• Overflow bit is always cleared

Rotate instructions – left or right (bits not lost like in shift operations)
• Simple Rotation (rol, ror)

• Extended Rotation (roxl, roxr)

Example: left logical shift by a count of 1 of the 64-bit string in d1 and d2

lsl.l #1, d2

roxl.l #1, d1

