
Acknowledgement:
“Computer Organization and Architecture”, by William Stallings, 6th edition

Input/Output Problems

• Wide variety of peripherals
— Delivering different amounts of data
— At different speeds
— In different formats

• All slower than CPU and RAM
• Need I/O modules

— Interface to CPU and Memory via system bus or Central Switch
— Interface to one or more peripherals

Generic Model of I/O Module

I/O Module Function

• Control & Timing
• CPU Communication
• Device Communication
• Data Buffering
• Error Detection

I/O Steps

• CPU checks I/O module device status
• I/O module returns status
• If ready, CPU requests data transfer
• I/O module gets data from device
• I/O module transfers data to CPU
• Variations for output, DMA, etc.

Acknowledgement:
“Computer Organization and Architecture”, by William Stallings, 6th edition

I/O Module Structure

The I/O module must be able to recognize and generate addresses associated with the
device it controls.
Each I/O module has a unique address, or, if it controls more than one external
device, a unique set of addresses.

Input Output Techniques:

a) Programmed I/O

• CPU has direct control over I/O
— Sensing status
— Read/write commands
— Transferring data

• CPU waits for I/O module to complete operation
• Wastes CPU time (processor is dedicated to the task of I/O and can therefore

transfer data at a higher rate)

Under programmed I/O data transfer is very like memory access (CPU viewpoint).
Each device is given a unique identifier.
CPU commands contain identifier (address).

How does it work:-

• CPU requests I/O operation
• I/O module performs operation
• I/O module sets status bits
• CPU checks status bits periodically
• I/O module does not inform CPU directly
• I/O module does not interrupt CPU
• CPU may wait or come back later

Acknowledgement:
“Computer Organization and Architecture”, by William Stallings, 6th edition

b) Interrupt-Driven I/O

• Overcomes CPU waiting
• No repeated CPU checking of device
• I/O module interrupts when ready (frees up the processor to some extent at the

expense of I/O transfer rate)

How does it work:-

• CPU issues read command
• I/O module gets data from peripheral whilst CPU does other work
• I/O module interrupts CPU
• CPU requests data
• I/O module transfers data

Interrupt Processing:

• Device issues an interrupt signal to the processor
• Processor checks for interrupt

— Indicated by an interrupt signal
• If no interrupt, fetch next instruction
• If interrupt pending:

— Suspend execution of current program
— Save context
— Set PC to start address of interrupt handler routine
— Process interrupt
— Restore context and continue interrupted program

Acknowledgement:
“Computer Organization and Architecture”, by William Stallings, 6th edition

Multiple Interrupts

• Disable interrupts

— Processor will ignore further interrupts whilst processing one interrupt
— Interrupts remain pending and are checked after first interrupt has been

processed
— Interrupts handled in sequence as they occur

• Define priorities
— Low priority interrupts can be interrupted by higher priority interrupts
— When higher priority interrupt has been processed, processor returns to

previous interrupt

Direct Memory Access

• Interrupt driven and programmed I/O require active CPU intervention

— Transfer rate is limited
— CPU is tied up managing an I/O transfer

• DMA is the answer when large volumes of data are to be moved

DMA involves an additional Module (hardware) on bus.
DMA controller takes over from CPU for I/O.

DMA Operation

• CPU tells DMA controller:-
— Read/Write
— Device address
— Starting address of memory block for data
— Amount of data to be transferred

• CPU carries on with other work
• DMA controller deals with transfer
• DMA controller sends interrupt when finished

Acknowledgement:
“Computer Organization and Architecture”, by William Stallings, 6th edition

DMA Configurations

1) Single Bus, Detached DMA controller

• Each transfer uses bus twice
— I/O to DMA then DMA to memory

• CPU is suspended twice

2) Single Bus, Integrated DMA controller

• Controller may support >1 device
• Each transfer uses bus once

— DMA to memory
• CPU is suspended once

3) Separate I/O Bus

• Bus supports all DMA enabled devices
• Each transfer uses bus once

— DMA to memory
• CPU is suspended once

