Exceptions

- also alter the order of execution of instructions
Two types:
1) Internal exceptions — caused by software when anomalous situations occur (ex. Divide by zero, trap, etc. )
2) External exceptions — caused by hardware when external hardware component requires attention of processor (ex. Reset,
interrupt caused by depressing key on keyboard)

When exception occurs, a piece of code is executed that indicates the appropriate action desired. Normal program execution is
suspended and program jumps to exception handling subroutine. If there is a reason to abort, program execution is terminated

(unrecoverable exceptions, such as divide by zero), otherwise, it returns to the appropriate instruction of the program (recoverable
exceptions, such as interrupts).

An exception can occur either during execution of an instruction or immediately after its completion.

How does the processor convey the nature of exception?
- each exception type is mapped to a unique number ranging from 0 to 255 known as Exception Vector Number
o divide by zero — exception number is 5
o address error — exception number is 3

Exception vector number serves as an index to an array of 256 longwords — the exception vector table — loaded in the first 1K of main
memory.

So for vector number v, the address of the exception handler is given by the longword contents of memory address v*4 (Table 9.4).

Two groups of exception — Table 9.2

Before handler is invoked (like branch and execute) some housekeeping is performed to make sure that the status register SR
contents are same upon return, and the return address must be saved. The following are pushed onto the Supervisor Stack.

- pushreturn address (either current address or next instruction address)

- then push SR contents
Exceptions are handled by the monitor (operating system). Therefore the SUPERVISOR bit is SET to 1 and the processor operates in
supervisor mode. The TRACE bit is also CLEARED. (Figure 9.2)

‘When exception occurs the processor invokes the handler, but to return from the handler, we need an appropriate return instruction -~
return from exception (rre).

- pops SR first
- then pops PC (return address)

Note — rts, rtr instructions pop values off the user stack and not from the system stack.

Internal Exceptions

1) Trace Exception (v = 9)

When Trace Bit of SR is set, a trace exception is generated and handler provides maximum amount of information to user.
The handler may run in an interactive mode.

dump_reg equ $6000
trace_vector equ $24
program move.l #trace_handler, trace vector

trace_handler  jsr dump-reg
Ite

end

/Y



2)

3)

4)

w

6)

7

Divide by Zero (v = 5)

- non recoverable (displays error messages and program terminates)
- Fig94

Privileged Instruction Exception (v = &)

- when one attempts to execute a privileged instruction while the processor is in user mode
- ex using rte instruction in user mode

Unimplemented (v = 10, /1) and Illegal Instruction Exceptions

- Invalid instructions, the binary strings of which do not correspond to any of the valid instructions.
- To distinguish invalid instructions ~
o Unimplemented instructions
*  No instruction starts with first nibble (4 bits) as A — called as line SA emulation exception
* No instruction starts with first nibble (4 bits) as $F — called as line $F emulation exception
*  These can be used to implement Floating point instructions
= See figure 9.5
o Illegal instructions
= No instruction starts with first word as either $4AFA, $4AFB, $4AFC
*  Used for breakpoints — see Figure 9.6
*  Breakpoints are recorded in a breakpoint table and $4AFA is inserted in place of valid code. When
instruction is executed, an exception occurs. Now it is the responsibility of the handler, to replace the
invalid word with original word, execute the instruction, corrupt it again, and return to user’s program

Trap exception
- software generated
a) Trap on overflow (wrapv)
o to catch overflows in arithmetic operations
o trapv instruction is included in assembly code after each operation that may result in overflow
o ifoverflow bit V = 1, then initiate exception (v = 7)
b) Traps (v = 3210 47)
o To communicate with Input/Outputs using 16 different traps
o trap #0 to trap #15
vector number in table = vector, + 32 where 0 <vector, <15

Check instruction (v =6)
- aninstruction that initiates an exception whenever an integer is not within a specified range
- used primarily to detect the index of an array which is out of bounds
example:
if register d0 = 000000F2

chk #5,d0  ; initiates an exception since F2 >3
chk #405,d0 ; does not initiate exception since F2 < 405

Address Error (v =3)

- whenever a longword or a word is attempted to be accessed at a byte boundary.

External Exceptions

1)

- result of activity outside the processor
o power on/off (using reset exception)
o when another device wishes to communicate using interrupts

Reset(v=20,1)
- signaled by asserting of external reset pin
o all registers have undetermined values

/9



2)

3)

priority level of interrupt set to 7

For the system to get started, 2 longwords of ROM plus enough ROM to contain initialization routines is required —
used to booting

Reset procedure

Current instruction immediately terminated

Set supervisor status bit, Reset trace bit, Priority mask bit set to 7

System Stack Pointer loaded with longword at $000000

Program counter loaded with longword at $000004

Begin program execution

O 0 O0O0O0

Interrupts (v =25 10 31)

Need for interrupts? - allows asynchronous (cannot predict actions) interaction with external environment
o Another way is polling
asserting of external interrupt line (3 bits)
7 levels (001 to 111), 000 default (normal operation)
o ifinterrupt level is greater than the current level, it is acknowledged, otherwise interrupt is ignored until mask
register is below external level
interrupts may be nested
Service an interrupt procedure
o Complete current instruction
Acknowledge external interrupt ‘
Determine interrupt vector number ( 24 + number on interrupt line)
Determine address ( (25to31)* 4 )
Exception processing
* SR->WR
* Shitset
= T bitreset
* Interrupt mask set to current level
= PC->on supervisor stack
*  WR -> on supervisor stack
*  Address ->PC

0O 0 0O

Interrupt handler should have “rte” to retrieve original SR which has prioi interrupt level

Bus Error - attempt to access out of range memory address

7l



TABLE 9.3 Two exception groups

Where to return?

Group Exception type

! i Illegal instruction, unimplemented Save the PC of the current insiruction
instruction, privilege violation. address

i error, bus error

Action

9

Trace, trap, trapv, chk, zero Save the PC of the “next” instruction
divide. interrupt

TABLE9.4 Exception vector table

’ rVeclor number Address ) Assignment
( 0 $000000 | Reser: Initial sSSP
[ 1 | Sc00002 | Reset: Initial PC
ﬁ 2 1 S$CC0008 Bus error
3 | s00500c | Address eror
4 SC00020 Iliegal instruction
5 5000014 Division by zero
8 5000018 CEX instruction
7 $00001C TR2PV instruction
5 $000020 | Privilege violation
9 5000024 | Trace
10 $000023 | Line Sa emulator
11 $02002C | Line ST emulator
12 $000030
. 13 $000034 | Reserved by Motorola
| 14 $000033
lll 15 $00003C Uninitialized interrupt vector
‘\ 16 $000040
‘ Reserved by Motorola
23 S000C57
$0000580 Spurious interrupt
$000084 Level 1 Interrupt autovector
26 S$000068 | Level 2 Interrupt autovector
27" $00005C | Level 3 Interrupt autovector
28 | 8000070 | Level 4 Interrupt autovector
5000074 Level 5 Interrupt autovector
30 SC00078 | Level 6 Interrupt autovector
1 $00007C | Level 7 Interrupt autovector
32 $000080 :
: : RAP Instruction vectors
’ 47 $000037
48 $0000CO
o : Reserved by Motorola
63 $000077
64 $0001CO
o User interrupt vectors
255




1

‘ Instruction executing

T

Identify exception via
appropriate vector number (0~255)

Save sr in a working register
Clear trace bit and set supervisor bit
Push pc (in supervisor stack)
Push g7 (in supervisor stack)

)
wE ;

Load pc with contents of location
(exception vector number) umes 4

l’

[ Exception routine is executing -l

|

Fatal error?

J( 0 Pop (supervisor stack) 10 st
/7/ Pop (supervisor stack) to pc

[ Execute next instruction i

wiﬂ\’“ sy G ijﬁ LZ
\A}?,M i ol v sl

Figure 9.2 Sequence of events that occur
in response to exception of internal

ﬁmﬁw v
U\'W‘/Dh"d}/ aﬂg,_

ofprrs™ /8

exception {except that of address ervor).



000000

—_—

000014

—_— 4800
000016

e 0000
400100 :
s [
400330 )

> 1divs+#0,d0 (=
400554

g

406000 -
S i |
480000
[

480200
PR L AN,

500000
AL LN,

sp
—— 00500000

000000 -~
Y e

000014 /,f‘-——-—
———1" 2800

000016

—_— 0000
400100 R
e B
400550 .
——>| divs%0,d0
400554

A AN,

NTAREVARN

405000 N
o[
480000
o

usp
—>| 00500000

> |00SFFFFA

1

usp
—— 00500000

[

pC
—> 100400550

sz, 5623 .

(a) Save st

SRG -

WT
—_—

000014

—_— 4800

000016

— 0000 4
. :':;:f

400100 - s

900 [ ]

400550 ..

———1 divs#0,d0

400554

406000 .
s [
ar
280000 :
[
= |
e

00SFFFEA

2 e T00200554
vl
) \v\shb“ Avanl

£L 13623

|

0
. S X e (o
e S

(b) Pushpc and wr

=
s

(¢) Jump to handler

|

Figure 9.4 Effect of division by zero exception.

/9



TN
J
(:7)
<

save_it move.l @28,-(57)
our_handler move.l #$1

10000,528 our_hendler org
e e e e eaees .\——:—.—."-/ ...

/}ﬂo . e L I

S um 3c. SA00L (v B

T UL e L

L A S Y

- AN

Jjump_2 éc.w SA003 \ e e e e e e e
........... ~._\| - e e e !

M recurn rte

restore move.l (a7)+,528

Figure 9.5 Using line A emulator.



/\,WTV"‘K‘\O“\AL)

Location

First word

004004

3038

004016

)]
wn

004020

40
00

o
(&)

(a) Breakpoint table

Location object code

Location object code

006000 0003
006002 FDF
004000

004000  3z7C 7000
004004 3038 6002
004008 6100 COOC
00400C 31C0O £0C2
004020 323C 00z2
004014 4E4=
004016 3700
004018 5340
004012 5500 0008
00401E 3017
004020 6000 0006
004024 61F0
004026 CODF
004028 4875

006000

006000 0003
006002 FDFD
004000 eate
004000 3E7C
004004 4AFC
004008 6100
00400C 31C0
004010 3E3C
004014 4ELE
004018 3r00
004018 4AFC
004012 6600
00401E 301F
004020 4AFC
004024 61F0
004026 CCDF
004028 4E75

0008

0006

(b) Input program

Al

(¢) Corrupted program

L

A5

Figure 9.6

2

e WLZ\/‘W‘,—L{L« L Lo w’}»/‘wue%-& 'V"“wé
W_A t/pé/»)f‘i Hee ;W/UVN/{N‘“‘ (/%'L%/r‘)/

i s g



TABLE 9.14 Four exception groups according to sequence of steps required for handling
an exception

Exception sequence steps

Group Exception type Actuon
1 Hlegal instruction. 1. Save SR in a WR.
unimplemented instruc- 2. Set supervisor bit and clear trace bit.
tion. privilege viola- 3. Save "PC" in system stack.
uon. trag, 4. Push WR in system stack.
chi, trace, zero divide 5. Jump to location indicated by exception vector.
2 Bus error. address error 1. Save SR in WR.
2. Set Supervisor bit. clear trace bit.
3. Push "PC" 1nto the svstem stack.
4. Push WR in system stack.
5. Invahd™ address 1s pushed into the svstem stack.
6. Access type word is pushed onto the stack.
7. Jump to locaunon indicated by exception vector.
3 (Exiernal) reset 1. Set supervisor bit. clear trace bit. set mask’s interrupt
level to 7.
2. Move longword contents of location excepuon vector
zero to register a’7.
3. Jump to location indicated by the longword contents of
excepltion vector one.
B Interrupt.

1. Save SR in WR.

2. Set supervisor bit. clear trace bit. set interrupt level to
that of the servicing interrupt.

3. Processor informs device that 1ssued interrupt that later
1s serviced.

4. Device responds by presenting processor with excepuon
vector number u.

5. Push "PC" 1nto system stack.

6. Push WR in system stack.

7. Jump to location indicated by exception vector u.




TABLE 9.15 Exception priorities

Exception priorities

_~ Level Exception type Acuon
[, [/Jol = 0 Address error. bus error. external reset Aborn current instrucion and then pro-
/‘/ .
A oy \'j cess exception
? 1 Illegal instruction. unimplemented instruction. trace, inter- Complete current instuction and then

rupt, privilege violation process excepion

(B8]

=, divide by zero Instrucuon exectuon initiates excep-
tion processing




