Data Representation - Binary Numbers

- While in most of applications the base 10 system is used to represent numerical values e.g.:

$$
345.501=3 \times 10^{2}+4 \times 10^{1}+5 \times 10^{0}+5 \times 10^{-1}+0 \times 10^{-2}+1 \times 10^{-3}
$$

- We can see that the number is a sum of coefficients multiplied by the base taken to different powers (exponents).
- The binary (base 2) system follows a similar structure.

Integer Conversion Between Decimal and Binary Bases

- Task accomplished by
- Repeated division of decimal number by 2 (integer part of decimal number)
- Repeated multiplication of decimal number by 2 (fractional part of decimal number)
- Algorithm
- Divide by target radix ($r=2$ for decimal to binary conversion)
- Remainders become digits in the new representation ($0<=$ digit < 2)
- Digits produced in right to left order
- Quotient used as next dividend
- Stop when the quotient becomes zero, but use the corresponding remainder

Convert Decimal to Binary

$345.865=3 \times 10^{2}+4 \times 10^{1}+5 \times 10^{0}+8 \times 10^{-1}+6 \times 10^{-2}+5 \times 10^{-3}$

- First separate the number into two integers: 345 (before decimal place) and 865 after decimal place.
- We will next divide 345 by 2 to obtain 172 with a remainder of $1(172.5$ is $172+1 / 2)$. This indicates that the least significant bit is one
- This process is repeated until the integer goes to zero.

Convert Decimal to Binary

- First 345/2 = 172 (remainder 1) - Least Significant Bit (LSB)
- Next $172 / 2=86$ (remainder 0)
- Then $86 / 2=43$ (remainder 0$)$
- Then $43 / 2=21$ (remainder 1$)$
- Then $21 / 2=10($ remainder 1$)$
- Then $10 / 2=5$ (remainder 0$)$
- Then $5 / 2=2$ (remainder 1)
- Then $2 / 2=1$ (remainder 0$)$
- Then $1 / 2=0$ (remainder 1) - Most Significant Bit (MSB)
- End.

This will lead to a binary number $\{101011001\}$ MSB......LSB $1+0+0+8+16+0+64+0+256=345$

Fractional Decimal-Binary Conversion

- Whole and fractional parts of decimal number handled independently
- To convert
- Whole part: use repeated division by 2
- Fractional part: use repeated multiplication by 2
- Add both results together at the end of conversion
- Algorithm for converting fractional decimal part to fractional binary
- Multiply by radix 2
- Whole part of product becomes digit in the new representation ($0<=$ digit <2)
- Digits produced in left to right order
- Fractional part of product is used as next multiplicand.
- Stop when the fractional part becomes zero
(sometimes it won't)

Convert Decimal to Binary

- In the case of the portion of the number to the right of the decimal place we would perform a multiplication process with the most significant bit coming first.
- First $0.865 \times 2=1.730$ (first digit after decimal is 1)
- Next $0.730 \times 2=1.460$ (second digit after decimal is 1)
- Then $0.460 \times 2=0.920$ (third digit after decimal is 0)
- Then $0.920 \times 2=1.840$ (fourth digit after decimal is 1)

Note that if the term on the right of the decimal place does not easily divide into base 2 , the term to the right of the decimal place could require a large number of bits. Typically the result is truncated to a fixed number of decimals.

The binary equivalent of $345.865=101011001.1101$

Binary Coded Hex Numbers

Decimal	Binary	Hex
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	B
12	1100	C
13	1101	D
14	1110	E

Decimal to Hex

From a previous example we found that the decimal number 345 was 101011001 in binary notation.

- In order for this to be represented in hex notation the number of bits must be an integer multiple of four. This will require the binary number to be written as:

000101011001 (the spaces are for readability).

- This will lead to a hex representation of $\$ 159$
(this is not to be confused with a decimal number of one hundred and fifty nine. Often the letter "\$" is placed at the beginning of a hex number to prevent confusion (e.g. \$159).

Integer Number Representation: 3 ways to represent

Representation using 8-bit numbers

- sign-and-magnitude representation
- MSB represents the sign, other bits represent the magnitude.
Example:
$+14=00001110$
$-14=10001110$
- In all three systems, leftmost bit is 0 for +ve numbers and 1 for -ve numbers.

Integer Number Representation: 3 ways to represent

Representation using 8-bit numbers

- signed 1's complement representation
- one's complement of each bit of positive numbers, even the signed bit
Example:
$+14=00001110$
$-14=11110001$
Note that 0 (zero) has two representations:

$$
\begin{aligned}
& +0=00000000 \\
& -0=11111111
\end{aligned}
$$

Integer Number Representation: 3 ways to represent

Representation using 8-bit numbers

- signed 2's complement representation
- two's complement of positive number, including the signed bit, obtained by adding 1 to the 1 's complement number
Example:
$+14=00001110$
$-14=11110001+1=11110010$
Note that 0 (zero) has only one representation

$$
\begin{aligned}
& +0=00000000 \\
& -0=11111111+1=00000000
\end{aligned}
$$

Arithmetic Addition

- Signed-magnitude:

Example: addition of +25 and -37

- Compare signs
- If same, add the two numbers
- If different
- Compare magnitudes
» Subtract smaller from larger and give result the sign of the larger magnitude

$$
+25+-37=-(37-25)=-12
$$

Note: computer system requires comparator, adder, and subtractor

Arithmetic Addition

- 2 's complement numbers: only addition is required
- Add two numbers including the sign bit
- Discard any carry
- Result is in 2's complement form

Example: addition of +25 and -37
00011001 (+25)
$+\underline{11011011(-37)}$
11110100 (-12)

Arithmetic Subtraction

- 2 's complement numbers: only addition and complementation
- Take 2's complement of B, add it to A

$$
\begin{aligned}
& \pm A-(+B)= \pm A+(-B) \\
& \pm A-(-B)= \pm A+(+B)
\end{aligned}
$$

- Discard any carry, Result is in 2's complement form
Example: $(-6)-(-13)=-6+13$
11111010 (-6)
$+\underline{00001101(+13)}$
100000111 (+7)

Overflow

- When sum of two n digit numbers result in a $n+1$ digit number
- Occurs when both numbers are either + ve or -ve
- Range for a 4 -bit number is -8 through +7
- Range for a 8-bit number is -128 through +127

$$
\left(-2^{n-1}\right) \text { to }\left(+2^{n-1}-1\right)
$$

- Overflow is detected (occurs) when carry into sign bit is not equal to carry out of sign bit

Overflow

Example:

$$
\begin{array}{r}
01000110(+70) \\
+01010000 \frac{(+80)}{+0111010(-70)} \\
\hline 010010110(+150) \\
+10110000 \frac{(-80)}{101101010}(-150)
\end{array}
$$

Overflow is detected (occurs) when carry into sign bit is not equal to carry out of sign bit

- the computer will often use an overflow flag (signal) to indicate this occurrence.

Binary Multiplication

Procedure similar to decimal multiplication

Example of binary multiplication (positive multiplicand)

Binary Multiplication (cont.)

Example of binary multiplication (negative multiplicand)

Multiplicand M (-14)	10010
Multiplier Q (+11)	x 01011
Partial product 0	$\begin{array}{r} \mathbf{1 1 1 0 0 1 0} \\ +\mathbf{1 1 0 0 1 0} \end{array}$
Partial product 1	$\begin{array}{r} \mathbf{1} 10101011 \\ +\mathbf{0} 000000 \end{array}$
Partial product 2	$\begin{array}{r} \mathbf{1} 1110101 \\ +\mathbf{1} 10010 \end{array}$
Partial product 3	$\begin{array}{r} \mathbf{1} 1011100 \\ +\mathbf{0} 00000 \end{array}$
Product P (-154)	1101100110

Binary Division

- Binary division similar to decimal - can be viewed as inverse of multiplication
- Shifts to left replaced by shifts to right
- Shifting by one bit to left corresponds to multiplication by 2, shifting to right is division by 2
- Additions replaced by subtractions (in 2's complement)
- Requires comparison of result with 0 to check whether it is not negative
- Unlike multiplication, where after finite number of bit multiplications and additions result is ready, division for some numbers can take infinite number of steps, so assumption of termination of process and precision of approximated result is needed

Binary Division - cont.

Division in binary	
Divisor $=1376543210$	Columnumber
\downarrow 1 10011	Result of divion
$1101 \mid 11110111$	Number to be dvided=247
11010000	$1 * 13 * 16=208$
00100111	Pesult of subtraction $=39$ (non-negative)
00000000	$0^{*} 13^{*} 8=0$ since $1^{*} 13^{*} 8=104$ when subtracted from 39 would give a negative
00100111	Resilt of subtraction $=39$ (non-negative)
00000000	$0^{*} 13^{*} 4=0$ since $1^{*} 13^{*} 4=52$ when subtracted from 39 would give a negative
00100111	Resilt of stibtraction $=39$ (non-negative)
00011010	$1 * 13^{*} 2=26$
00001101	Result of stbtraction $=13$ (non-negative)
00001101	$1^{*} 13^{*} 1=13$
00000000	Result of subtraction $=0$ (non-negative)

Floating Point Numbers

The range of values for a 32-bit + ve integer number is

$$
2^{32} \approx 4.3 \times 10^{9}
$$

As + ve and - ve integers, range is

$$
\approx 0 \text { to } \pm 2.15 \times 10^{9}
$$

As fractions range is $\approx \pm 4.55 \times 10^{-10}$ to ± 1
These ranges are not sufficient for scientific calculations.
It would be useful to be able to use floating point notation.

Floating Point Numbers

Consider the number 6132.789
$=+0.6132789 \times 10^{+4}$ (decimal point is 4 positions to the right)
$= \pm m x r^{e}$
where m is mantissa, e is exponent, and r is radix

S	mantissa	\exp

24 bits 8 bits
One bit - the S bit - represents the sign of the number

IEEE Standard

Example:
Unnormalized form: $0.0010110 \ldots \times 2^{9}$
Normalized form: $1.0110 \ldots \times 2^{6}$
The 1 before the decimal point does not need to be represented as it is always 1 in normalized form.

| $S \mid \exp E^{\prime}$ | mantissa M |
| :--- | :--- | :--- |

S : 1-bit sign of the number
M: 23-bits mantissa
$E^{\prime}: 8$-bit signed exponent in excess-127 format
$E^{\prime}=E+127$, where E is the actual value of the exponent

IEEE Standard

$S \exp E^{\prime} \quad$ mantissa M

Number $= \pm 1 . M \times 2^{E^{\prime}-127}$
Example:
$S=0$
$M=00101010000000000000000$
$E^{\prime}=00101000 \Rightarrow E^{\prime}=E+127 \Rightarrow 40=E+127 \Rightarrow E=-87$
The number is therefore 1.001010×2^{-87}
Note that E^{\prime} is in the range of $0 \leq E^{\prime} \leq 255$
0 and 255 has special values, therefore E^{\prime} is $1 \leq E^{\prime} \leq 254$,
$\Rightarrow E$ is in the range of $-126 \leq E \leq 127$
When $E^{\prime}=0$ and $M=0$, it represents value exact of 0 .
When $E^{\prime}=255$ and $M=0$, it represents value of ∞.
When $E^{\prime}=255$ and $M \neq 0$, it is Not a Number (NaN), due to the result of performing invalid operation like $0 / 0$ or $\sqrt{-1}$
When $E^{\prime}=0$ and $M \neq 0$, value is $\pm 0 . M \times 2^{-126}$. The number is smaller than the smallest normal number -> used for gradual underflow.

Convert Decimal to IEEE format

Decimal number $=2036$
Hex equivalent $=07 \mathrm{~F} 4$
Binary equivalent $=011111110100=01.1111110100 \times 2^{10}$

$$
E^{\prime}=E+127=10+127=137=10001001_{2}
$$

Therefore:
$S=0, E^{\prime}=10001001, M=11111101000000000000000$

Now try doing reverse, converting Floating point to Decimal:
Number is $1.1111110100 \times 2^{10}$, since $E^{\prime}=E+127=>E=10$.
$=\left(1+1 \times 2^{-1}+1 \times 2^{-2}+1 \times 2^{-3}+1 \times 2^{-4}+1 \times 2^{-5}+1 \times 2^{-6}\right.$
$\left.+0 \times 2^{-7}+1 \times 2^{-8}+0 \times 2^{-9}+0 \times 2^{-10}\right) \times 2^{10}$
$=1.98828125 \times 2^{10}$
$=2036$

