
Data Representation – Binary Numbers



Integer Conversion Between Decimal and Binary Bases

• Task accomplished by
– Repeated division of decimal number by 2 (integer part of decimal 

number)

– Repeated multiplication of decimal number by 2 (fractional part of 
decimal number)

• Algorithm
– Divide by target radix (r=2 for decimal to binary conversion)

– Remainders become digits in the new representation (0 <= digit < 
2)

– Digits produced in right to left order

– Quotient used as next dividend

– Stop when the quotient becomes zero, but use the corresponding 
remainder



Convert Decimal to Binary 



Convert Decimal to Binary 

• First 345/2 = 172 (remainder 1) – Least Significant Bit (LSB)

• Next 172/2= 86 (remainder 0)

• Then 86/2 = 43 (remainder 0)

• Then 43/2 = 21 (remainder 1)

• Then 21/2 = 10 (remainder 1)

• Then 10/2 = 5 (remainder 0)

• Then 5/2 = 2 (remainder 1)

• Then 2/2 = 1 (remainder 0)

• Then 1/2 = 0 (remainder 1) – Most Significant Bit (MSB)

• End.

This will lead to a binary number {101011001}   MSB…...LSB

1+0+0+8+16+0+64+0+256 = 345 



Fractional Decimal-Binary Conversion

• Whole and fractional parts of decimal number handled independently

• To convert
– Whole part: use repeated division by 2

– Fractional part: use repeated multiplication by 2

– Add both results together at the end of conversion

• Algorithm for converting fractional decimal part to fractional binary
– Multiply by radix 2

– Whole part of product becomes digit in the new representation (0 <= digit 
< 2)

– Digits produced in left to right order

– Fractional part of product is used as next multiplicand.

– Stop when the fractional part becomes zero
(sometimes it won’t)



Convert Decimal to Binary 

• In the case of the portion of the number to the right of the decimal 

place we would perform a multiplication process with the most 

significant bit coming first.

• First 0.865 x 2 = 1.730 (first digit after decimal is 1) 

• Next 0.730 x 2 = 1.460 (second digit after decimal is 1)

• Then 0.460 x 2 = 0.920 (third digit after decimal is 0)

• Then 0.920 x 2 = 1.840 (fourth digit after decimal is 1)

Note that if the term on the right of the decimal place does not easily 

divide into base 2, the term to the right of the decimal place could require 

a large number of bits. Typically the result is truncated to a fixed number 

of decimals. 

The binary equivalent of 345.865 = 101011001.1101 



Binary Coded Hex Numbers

Decimal Binary Hex

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F



Decimal to Hex 

From a previous example we found that the decimal number 

345 was 101011001 in binary notation.

• In order for this to be represented in hex notation the 

number of bits must be an integer multiple of four. This 

will require the binary number to be written as: 

0001 0101 1001 (the spaces are for readability).

• This will lead to a hex representation of $159 

(this is not to be confused with a decimal number of one 

hundred and fifty nine. Often the letter “$” is placed at the 

beginning of a hex number to prevent confusion (e.g. $159).



Integer Number Representation: 3 ways to represent

Representation using 8-bit numbers

• sign-and-magnitude representation

– MSB represents the sign, other bits represent 

the magnitude. 

Example:

+14 = 0000 1110

-14  = 1000 1110

• In all three systems, leftmost bit is 0 for +ve

numbers and 1 for –ve numbers.



Integer Number Representation: 3 ways to represent

Representation using 8-bit numbers

• signed 1’s complement representation

– one’s complement of each bit of positive 

numbers, even the signed bit

Example:

+14 = 0000 1110

-14  = 1111 0001

Note that 0 (zero) has two representations:

+0 = 0000 0000

-0 = 1111 1111



Integer Number Representation: 3 ways to represent

Representation using 8-bit numbers

• signed 2’s complement representation

– two’s complement of positive number, 

including the signed bit, obtained by adding 1 

to the 1’s complement number

Example:

+14 = 0000 1110

-14  = 1111 0001 + 1 = 1111 0010

Note that 0 (zero) has only one representation

+0 = 0000 0000

-0 = 1111 1111 + 1 = 0000 0000



Arithmetic Addition

• Signed-magnitude:

Example: addition of +25 and -37

– Compare signs

• If same, add the two numbers

• If different

– Compare magnitudes

» Subtract smaller from larger and give result the sign 

of the larger magnitude

+25 + -37 = - (37-25) = -12

Note: computer system requires comparator, 

adder, and subtractor



Arithmetic Addition

• 2’s complement numbers: only addition is 

required

– Add two numbers including the sign bit

– Discard any carry

– Result is in 2’s complement form

Example: addition of +25 and -37

0001 1001 (+25)

+ 1101 1011 (-37)

1111 0100 (-12)



Arithmetic Subtraction



Overflow



Overflow

Example:

Overflow is detected (occurs) when carry into 

sign bit is not equal to carry out of sign bit

• the computer will often use an overflow flag 

(signal) to indicate this occurrence.

0 100 0110 (+70) 1 011 1010 (-70)

+ 0 101 0000 (+80) + 1 011 0000 (-80)

0 1 001 0110 (+150) 1 0 110 1010 (-150)



Binary Multiplication

Procedure similar to decimal multiplication

Example of binary multiplication (positive multiplicand) 



Binary Multiplication (cont.)

Example of binary multiplication (negative multiplicand) 

Multiplicand M   (-14) 1 0 0 1 0

Multiplier Q        (+11) x  0 1 0 1 1
-----------

Partial product 0 1 1 1 0 0 1 0
+  1 1 0 0 1 0
------------------

Partial product 1 1 1 0 1 0 1 1
+ 0 0 0 0 0 0 
------------------

Partial product 2 1 1 1 0 1 0 1
+ 1 1 0 0 1 0
--------------------

Partial product 3 1 1 0 1 1 0 0
+ 0 0 0 0 0 0
----------------------

Product P     (-154) 1 1 0 1 1 0 0 1 1 0



Binary Division

• Binary division similar to decimal - can be viewed as 
inverse of multiplication
– Shifts to left replaced by shifts to right

• Shifting by one bit to left corresponds to multiplication by 2, shifting 
to right is division by 2

– Additions replaced by subtractions (in 2’s complement)
• Requires comparison of result with 0 to check whether it is not 

negative

• Unlike multiplication, where after finite number of bit 
multiplications and additions result is ready, division for 
some numbers can take infinite number of steps, so 
assumption of termination of process and precision of 
approximated result is needed



Binary Division – cont.



Floating Point Numbers



Floating Point Numbers

S                   mantissa                    exp



IEEE Standard



IEEE Standard

Number = ±1.𝑀 𝑥 2𝐸
′−127

Example:

S = 0

M = 00101010000000000000000 

E’ = 00101000 => E’ = E +127 => 40 = E +127 => E = -87

The number is therefore 1.001010 𝑥 2−87

Note that E’ is in the range of  0 ≤ 𝐸′ ≤ 255
0 and 255 has special values, therefore E’ is 1 ≤ 𝐸′ ≤ 254,
=> E is in the range of −126 ≤ 𝐸 ≤ 127
When E’ = 0 and M = 0, it represents value exact of 0.

When E’ = 255 and M = 0, it represents value of ∞.

When E’ = 255 and M ≠ 0, it is Not a Number (NaN), due to the result of 

performing invalid operation like 0/0 or −1
When E’ = 0 and M ≠ 0, value is ±0.𝑀 𝑥 2−126. The number is smaller than the 

smallest normal number -> used for gradual underflow.



Convert Decimal to IEEE format

Decimal number = 2036

Hex equivalent = 07F4

Binary equivalent = 0111 1111 0100 = 01.1111110100 x 210

𝐸′ = 𝐸 + 127 = 10 + 127 = 137 = 1000 10012
Therefore:

S =0, E’ = 1000 1001, M = 1111 1101 0000 0000 0000 000

Now try doing reverse, converting Floating point to Decimal:

Number is 1.1111110100 x 210, since 𝐸′ = 𝐸 + 127 => E = 10.

= (1 + 1 x 2−1+ 1 x 2−2 + 1 x 2−3 + 1 x 2−4 + 1 x 2−5 + 1 x 2−6

+ 0 x 2−7 + 1 x 2−8 + 0 x 2−9 + 0 x 2−10) x 210

= 1.98828125 x 210

= 2036


