Data Representation — Binary Numbers

« While in most of applications the base 10 system is used to
represent numerical values e.g. :

345.501 = 3x10% +4x10* + 5x10° +5x10~1 + 0x1072 + 1x1073

* We can see that the number 1s a sum of coefficients
multiplied by the base taken to different powers
(exponents).

» The binary (base 2) system follows a similar structure.

Integer Conversion Between Decimal and Binary Bases

« Task accomplished by

— Repeated division of decimal number by 2 (integer part of decimal
number)

— Repeated multiplication of decimal number by 2 (fractional part of
decimal number)
» Algorithm
— Divide by target radix (r=2 for decimal to binary conversion)
— Rze)mainders become digits in the new representation (0 <= digit <
— Digits produced in right to left order
— Quotient used as next dividend

— Stop when the quotient becomes zero, but use the corresponding
remainder

Convert Decimal to Binary

345.865 = 3x10% + 4x10* + 5x10° +8x10~1 + 6x1072 +5x1073

 First separate the number into two itegers: 345 (before
decimal place) and 865 after decimal place.

« We will next divide 345 by 2 to obtain 172 with a
remainder of 1 (172.51s 172+1/2). This indicates that the
least significant bit 1s one

« This process is repeated until the integer goes to zero.

Convert Decimal to Binary

« First 345/2 = 172 (remainder 1) — Least Significant Bit (LSB)
« Next 172/2= 86 (remainder 0)

« Then 86/2 = 43 (remainder 0)

 Then 43/2 =21 (remainder 1)

« Then 21/2 = 10 (remainder 1)

e Then 10/2 =5 (remainder 0)

 Then5/2 =2 (remainder 1)

« Then 2/2 =1 (remainder 0)

e Then 1/2 =0 (remainder 1) — Most Significant Bit (MSB)

« End.

This will lead to a binary number {101011001} MSB.....LSB
1+0+0+8+16+0+64+0+256 = 345

Fractional Decimal-Binary Conversion

« Whole and fractional parts of decimal number handled independently
« To convert

Whole part: use repeated division by 2
Fractional part: use repeated multiplication by 2
Add both results together at the end of conversion

 Algorithm for converting fractional decimal part to fractional binary

Multiply by radix 2

Wh)ole part of product becomes digit in the new representation (0 <= digit
<2

Digits produced in left to right order
Fractional part of product is used as next multiplicand.

Stop when the fractional part becomes zero
(sometimes it won’t)

Convert Decimal to Binary

 In the case of the portion of the number to the right of the decimal
place we would perform a multiplication process with the most
significant bit coming first.

« First 0.865 x 2 = 1.730 (first digit after decimal is 1)

e Next0.730 x 2 = 1.460 (second digit after decimal is 1)
« Then 0.460 x 2 = 0.920 (third digit after decimal is 0)

e Then 0.920 x 2 = 1.840 (fourth digit after decimal is 1)

Note that if the term on the right of the decimal place does not easily
divide into base 2, the term to the right of the decimal place could require
a large number of bits. Typically the result is truncated to a fixed number
of decimals.

The binary equivalent of 345.865 =101011001.1101

Binary Coded Hex Numbers

Decimal Binary Hex
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9

10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E

Decimal to Hex

From a previous example we found that the decimal number
345 was 101011001 in binary notation.

 In order for this to be represented in hex notation the
number of bits must be an integer multiple of four. This
will require the binary number to be written as:

0001 0101 1001 (the spaces are for readability).

« This will lead to a hex representation of $159

(this is not to be confused with a decimal number of one
hundred and fifty nine. Often the letter “$” is placed at the
beginning of a hex number to prevent confusion (e.g. $159).

Integer Number Representation: 3 ways to represent

Representation using 8-bit numbers

* sign-and-magnitude representation

— MSB represents the sign, other bits represent
the magnitude.

Example:
+14 = 0000 1110
-14 =1000 1110

* |n all three systems, leftmost bit is O for +ve
numbers and 1 for —ve numbers.

Integer Number Representation: 3 ways to represent

Representation using 8-bit numbers
« signed 1’s complement representation

— one’s complement of each bit of positive
numbers, even the signed bit

Example:
+14 = 0000 1110
-14 =1111 0001

Note that O (zero) has two representations:
+0 = 0000 0000
-0 =1111 1111

Integer Number Representation: 3 ways to represent

Representation using 8-bit numbers
» signed 2’s complement representation

— two’s complement of positive number,
Including the signed bit, obtained by adding 1
to the 1’s complement number

Example:
+14 = 0000 1110
-14 =1111 0001 +1 =1111 0010

Note that O (zero) has only one representation
+0 = 0000 0000
-0 =1111 1111 + 1 = 0000 0000

Arithmetic Addition
 Signed-magnitude:
Example: addition of +25 and -37

— Compare signs

e If same, add the two numbers

o If different

— Compare magnitudes

» Subtract smaller from larger and give result the sign
of the larger magnitude

+25 + -37 = - (37-25) = -12

Note: computer system requires comparator,
adder, and subtractor

Arithmetic Addition

» 2’s complement numbers: only addition 1s
required
— Add two numbers including the sign bit
— Discard any carry

— Result 1s 1n 2’s complement form

Example: addition of +25 and -37
0001 1001 (+25)
+ 1101 1011 (-37)
1111 0100 (-12)

Arithmetic Subtraction

« 2’s complement numbers: only addition and
complementation

— Take 2’s complement of B, add it to A
+A — (+B) = +A + (—B)
+A —(—B) = A+ (+B)

— Discard any carry, Result 1s 1n 2’s complement
form

Example: (—6) — (—13) = —6 + 13
1111 1010 (-6)

+0000 1101 (+13)
1 0000 0111 (+7)

Overflow

When sum of two n digit numbers result in a
n+1 digit number

— Occurs when both numbers are either +ve or —ve
Range for a 4-bit number 1s —8 through +7
Range for a 8-bit number 1s —128 through +127

(=2 Y to (+2™ 1 - 1)

Overflow 1s detected (occurs) when carry into
sign bit 1s not equal to carry out of sign bit

Overflow
Example:
0 100 0110 (+70) 1011 1010 (-70)

+ 0101 0000 (+80) + 1011 0000 (-80)
010010110 (+150) 10 110 1010 (-150)

Overflow is detected (occurs) when carry Into
sign bit is not equal to carry out of sign bit

 the computer will often use an overflow flag
(signal) to indicate this occurrence.

Binary Multiplication

Procedure similar to decimal multiplication

Y

Multiplication in base 10

2 3 Note that 40*23 = 920 can be
- 46 represented by shifting 423 =92 one
1.3 8 623 |position left and inserting a 0 in the
9 2 0 4023 |yacated position
1058 Sum

Example of binary multiplication (positive multiplicand)

=
c
=
=2
o
o
=
o
3
E
g
3

alo =|= o|lo oje o|le 5
=|lo o|lo o|lo ojo o|u o
ala alo o 2le =|s g
ol =wla o|lo ol= o|lw =
[S)
(&)
b

-
~

0 Column number
1 First number = 19
1 Second number = 13

oIn
—_|

Number A times B0
Number A times B1 shifted left by 1

O o|lo o

11 Sum

0 0 “MNumber A times B3 shifted left by 3

11 Sum

-------- Process continues. Not shown as all other Bi =0
11110111 Final result = 247

0

0

0 1 Sum

1 E\Q Number A times B2 shifted left by 2
1

0

1

-_l— OO O

Binary Multiplication (cont.)

Example of binary multiplication (negative multiplicand)

Multiplicand M (-14) 10010
Multiplier Q (+11) x 01011
Partial product O 1110010
+110010
Partial product 1 1101011
+000000
Partial product 2 1110101
+110010
Partial product 3 1101100
+000000

Product P (-154) 1101100110

Binary Division

* Binary division similar to decimal - can be viewed as
Inverse of multiplication

— Shifts to left replaced by shifts to right

« Shifting by one bit to left corresponds to multiplication by 2, shifting
to right is division by 2

— Additions replaced by subtractions (in 2’s complement)

» Requires comparison of result with 0 to check whether it is not
negative

 Unlike multiplication, where after finite number of bit
multiplications and additions result is ready, division for
some numbers can take infinite number of steps, so
assumption of termination of process and precision of
approximated result is needed

Binary Division — cont.

Division in binary
Dvisor=13 7 6 543210 Column number
10011 Resut of dvision
110111110111 Nurbertobedvided=247
11010000 1'1316=208
00100111 Result of subtraction = 39 (nonnegative)
00000000 0138=0since1*13'8 =104 when subtracted from 39 wouid give a neqative
00100111 Resutofsbtraction="39 (non-negative)
00000000 07134=0since 1*13'4 =52 when subtracted from 39 would give a negative
00100111 Restit of subtraction = 39 (non-negative)
00011010 11132=2%
00001101 Result of subtraction = 13 (non-negative)
00001101 1"131=13
00000000 Mtdabtra:ﬁon:O(mnegative)

Floating Point Numbers

The range of values for a 32-bit +ve integer
number 1s

232 ~ 4.3x10°

As +ve and —ve 1ntegers, range 1s
~0to +2.15x 10°

As fractions range is +4.55x 1071%to +1

These ranges are not sufficient for scientific
calculations.

It would be useful to be able to use floating point
notation.

Floating Point Numbers

Consider the number 6132.789

=40.6132789 x 10 +4 (decimal point is 4 positions to the right)

=+mxre

where m 1s mantissa, e 1s exponent, and 7 1s radix

S

mantissa

“exp

24 bits

8 bits

One bit — the S bit — represents the sign of the number

|EEE Standard

Example:
Unnormalized form: 0.0010110... x 2°
Normalized form: 1.0110... x 2°

The 1 before the decimal point does not need to be
represented as 1t 1s always 1 in normalized form.

S lexp E' mantissa M

S: 1-bit sign of the number

M: 23-bits mantissa

E’: 8-bit signed exponent in excess-127 format

E' = FE + 127, where E is the actual value of the exponent

|EEE Standard

S ‘exp E’' ‘ mantissa M
Number = +1. M x 2E'~127
Example:
S=0

M = 00101010000000000000000

E’= 00101000 =>E’=E +127 =>40=E +127 => E = -87
The number is thfrefore 1.001010 x 2787

Note that £’is inthe range of 0 < E’ < 255

0 and 255 has special values, therefore £°is 1 < E' < 254,

=>E isintherange of =126 < E < 127

When £°=0 and M = 0, it represents value exact of 0.

When E’= 255 and M = 0, it represents value of co.

When E£’= 255 and M =+ 0, it is Not a Number (NaN), due to the result of
performing invalid operation like 0/0 or v—1

When E’=0and M = 0, value is £0. M x 27126, The number is smaller than the
smallest normal number -> used for gradual underflow.

Convert Decimal to IEEE format

Decimal number = 2036
Hex equivalent = 07F4

Binary equivalent = 0111 1111 0100 = 01.1111110100 x 21°
E'=FE+127 =10+ 127 =137 =10001001,

Therefore:
S =0, £’=1000 1001, M =1111 1101 0000 0000 0000 000

Now try doing reverse, converting Floating point to Decimal:
Number is 1.1111110100 x 219, since E' = E + 127 => E = 10.
=(1+1x27 M4+ 1x22+1x23+1x27*+1x2>+1x27°
+0X277+1x278+0x27+0x2710) x 210

=1.98828125 x 210

= 2036

