Problem 1)

We want to write a Motorola assembly program that

(i) reads a series of 16-bit integers stored in memory,

(ii) determines if the integer is even,

(iii) if even store 1 (True) in the result, say R, or else store 0 (False) in the result.

Follow the following C++ code.

#include <iostream.h>

bool even(int);

int main()

{

 int x;

 for (int i = 1; i <= 3; ++i) {

 cout << "Enter an integer: ";

 cin >> x;

 if (even(x))

 cout << x << " is an even integer\n\n";

 else

 cout << x << " is an odd integer\n\n";

 }

 cout << endl;

 return 0;

}

bool even(int a)

{

 return !(a % 2);

}

Problem 2
The program below is supposed to count the number of 1’s in a 32 bits number and calculate the ODD parity (odd number of 1’s). Complete the missing part that is supposed to count the number of 1’s (store result in D3).

Problem 3)

Write a Motorola program that calculates X (a 16bit number stored in memory) raised to the Y (a 8bit number stored in memory) power. The program should have a while repetition control structure.

Problem 4
Write the instruction execution cycle (machine instructions) for

1. beq.w $0400

2. move.l (a0),d0

3. move.w 24(a0),d1

4. move.w $12(a1, a2.l), d2

5. move.w $0400, d0

6. move (a1)+,d0

7. move d0, -(a0)

8. move.w #1234, d0

How many times is the memory accessed in each of the above instructions?

Problem 5)

Given a list of integers of word length terminated by a zero, write a MC68000 assembly language program to find which integers are prime. Use as few instructions as possible.

Problem 6)

Write a Motorola program to Sum the odd integers between 1 and 99 using a for structure.

Problem 7
1. Explain the difference between external and internal exceptions and
give an example for each.

2. Explain what rte instruction does

3. Give the sequence of events (in form of a flow diagram) that occur
when there is a privileged instruction exception with vector number 8.

 Problem 8
Explain how the following instructions work. Assume contents in data registers used.
1. moveq #$6b, d2

2. movem d0-d3, -(a7)

3. LEA x,a2

4. dbeq d0, loop

5. dbra d0, loop

6. ANDI $ABCD, d0

7. OR d0,d1
8. difference between ASL and LSL instructions
9. difference between ASR and LSR instructions

10. ROL and ROR instructions
11. ROXL and ROXR instructions

12. difference between JSR and BSR instructions

13. difference between RTS and RTR instructions

14. difference between macro and subroutine
	MOVE.L NUMBER, D0

	MOVE.W #??? ,D1 	; loop counter

	CLR.B D3			; to count number of 1’s

LOOP	

	DBRA D1,LOOP 	; decrement counter and loop

	AND.B #1,D3 	; check if count is ODD

	MOVE.B D3, PARITY ; store 1 if ODD, 0 if even

NUMBER 	DC.L $1234ABCD

PARITY DS.B 1

	

