
An Efficient Algorithm for Detecting Patterns in Traces of Procedure Calls*

* This research is supported by NSERC

Abdelwahab Hamou-Lhadj
University of Ottawa

800 King Edward Avenue
Ottawa, Ontario, K1N 6N5 Canada

ahamou@site.uottawa.ca

Timothy C. Lethbridge
University of Ottawa

800 King Edward Avenue
Ottawa, Ontario, K1N 6N5 Canada

tcl@site.uottawa.ca

Abstract

Examining the behavior of a large legacy software
system helps understand its functionality. Dynamic
analysis techniques are well suited for this purpose. Run-
time information is typically represented in the form of
execution traces; however, the amount of information
contained in a trace, of even a small program, can be
very large and usually overwhelming. It becomes
important to filter these traces and present only the
information that adds value to the comprehension
process. Many researchers agree that analyzing
recurrent patterns in a trace can be useful to bridge the
gap between low-level system components and high-level
domain concepts. This paper introduces an efficient
algorithm that extracts patterns of procedure calls of
large execution traces. We also present a set of matching
criteria that can be used in procedural as well as object
oriented software systems to decide when two patterns
can be considered equivalent.

Keywords:

Reverse engineering, program comprehension, dynamic
analysis, execution traces, trace patterns

1. Introduction
Understanding a poorly documented software system

is not an easy task. Program comprehension techniques
aim at overcoming this difficulty. Tools based on these
techniques can indeed help software maintainers to
complete their daily tasks in a more efficient way [9]. In
general, reverse engineering tools can be categorized
according to whether they perform a static analysis of the
code or a dynamic analysis of the executing system. In
[10], Stroulia and Systä presented a large set of reverse
engineering activities where dynamic analysis can be
used, such as, extracting system modularization,
understanding the role of software artifacts and so on.
Many other researchers use run-time information to solve

the popular problem of feature localization – locating
low-level system components that implement a particular
software feature [4, 5, 13]. Moreover, Zayour and
Lethbridge [14] experimented with a large real world
telecommunication system and found that traces of
procedure calls, once made usable, can be very useful to
help maintainers perform cognitively taxing activities.
Their tool, called DynaSee, uses techniques such as
redundancy removal, pattern detection and routine
ranking to overcome the size explosion problem of run-
time information. Among the features of DynaSee is the
possibility for software engineers to replace a pattern of
procedure calls (called trace pattern) with a textual
description mapping low-level system components to
high-level application domain concepts. However, they
did not present an algorithm that detects these patterns.

In this paper, we present an efficient algorithm that
extracts trace patterns. We also present a list of pattern
matching criteria that can be used in procedural software
systems to group similar but not necessarily identical
patterns together. Our algorithm is based on a technique
used to solve a problem known as the common
subexpression problem [3, 6], which consists of
transforming a rooted tree into its most compact form in
such a way that all isomorphic subtrees are represented
only once. Figure 1. illustrates this concept.

Figure 1. The graph b) represents the compact form

of the tree a)

Jerding et al. [8] presented an algorithm that is
similar, in principle, to the one provided in this paper.
However, their algorithm has some limitations, as we
will see in the related work section. The rest of this paper
is organized as follows; the next section presents related

work. We define what we mean by trace patterns in
Section 3. The algorithm that detects them is explained
in Section 4. Section 5 describes a set of matching
criteria that can be used to decide when two patterns are
equivalent. Finally, we conclude in Section 6.

2. Related work
Jerding et al.[8] emphasized the importance of trace

patterns for understanding the behavior of object oriented
systems. They also presented an algorithm that identifies
them. However, their algorithm considers all kinds of
repetitions as patterns. This is probably due to the
requirements of their visualization tool. For example,
they considered contiguous repetitions as trace patterns
(that is, candidate high-level concepts) at the same level
as non-contiguous repetitions. We think that contiguous
redundancies encumber the trace and do not add value to
its content. They should be removed and replaced by the
number of their occurrences, if necessary. The same
choice was made by Zayour and Lethbridge [14] and De
Pauw et al. [2]. In addition to that, their algorithm
considers identical matches only.

De Pauw et al. [2] considered patterns that are similar
but not necessarily identical and presented an interesting
list of matching criteria. However, they briefly discussed
the algorithm that detects them. In addition to that, most
of their matching criteria apply to object oriented systems
only.

3. Definition of a trace pattern
Ideally, a trace pattern captures a high-level domain

concept. In procedural software systems, these concepts
are usually implemented in the form of interactions
between the system procedures. Zayour and Lethbridge
define a trace pattern as “a sequence of calls that occurs
repetitively but non-contiguously in several places in the
trace” [14]. This definition excludes patterns that are not
identical but that exhibit some similarities. We add to
this definition the fact that instances of this sequence of
calls do not need to be identical but satisfy some pattern
matching criteria. Enabling fuzzy similarity can be very
beneficial to trace compression and visualization. The
pattern matching criteria can vary depending on the
system at hand. They can be either specified by the users
or extracted automatically using heuristics.

4. The algorithm

A trace of procedure calls can be represented by a
rooted, ordered, labeled tree. Each node corresponds to a
procedure call. The node label can be the name of the
procedure. The tree levels correspond to the nesting
levels of the calls. A trace pattern is then represented as a
repeated subtree. Our algorithm starts with a
preprocessing stage that aims at removing contiguous

repetitions due to loops and recursion. In [7], we
presented a simple but efficient algorithm that does this.
The hierarchical nature of the trace is maintained by
adding a virtual call whose label starts with Seq followed
by the number of occurrences of the repeated sequence.
Please, note that this virtual call can be omitted in case of
repetitions of single procedure calls as illustrated in
Figure 2.

Figure 2. Removing contiguous repetitions

Now that the trace is preprocessed, we apply the
pattern detection algorithm to extract trace patterns. As
mentioned earlier, the idea behind this algorithm is based
on transforming a rooted, ordered, labeled tree to its most
compressed form by representing repeated subtrees only
once. The result of this compression is a directed acyclic
graph as shown in Figure 1. Flajolet et al. described a
top-down recursive procedure that solves this problem in
an expected linear time assuming that the degree of the
tree is bounded by a constant [6]. Valiente presented an
iterative version of Flajolet et al.’s algorithm with a
slight improvement of its readability [12]. In our
previous work, we used an adaptation of Valiente’s
algorithm to compress a trace of procedure calls [7]. In
what follows, we extend it to consider similar but not
necessarily identical patterns as well as enabling the
frequency analysis of the patterns.

Before getting into the details of the algorithm, first,
consider a function called Match(n1, n2) that takes two
nodes n1 and n2 and returns true if the trees rooted at
these nodes are considered similar according to
predefined matching criteria. The function returns false
otherwise. We discuss the specifics of this function in
Section 5.

The algorithm proceeds by traversing the tree in a
bottom-up fashion (from the leaves to the root). Each
node is assigned a certificate (a positive integer between
1 and n, where n represents the size of the tree). The
certificates are assigned in such a way that two nodes n1
and n2 have the same certificate if and only if Match(n1,
n2) returns true, that is, the trees rooted at them exhibit
some similarities but are not necessarily isomorphic as is
the case in Valiente’s algorithm.

To compute the certificate, the algorithm uses a
signature scheme that identifies each node. The signature
of a node n consists of its label and the certificates of its
direct children, if there are any. A global hash table is
used to store the certificates and signatures and ensure
that similar subtrees will always hash to the same

element. We added a new field to the table in order to
select only patterns that satisfy a certain frequency
threshold. Table 1. shows the resulting table that
corresponds to applying the algorithm to the tree of
Figure 1. The frequency field enables the frequency
analysis of the trace. T. Ball showed that frequency
analysis of dynamic information can help programmers
cluster components according to their behavior and
identify related computations [1].

Table 1. Result of the algorithm when applied to the
tree of Figure 1.

Certificate Signature Frequency
1 B 1
2 C 1
3 A 1 2 2
4 E 2 3 1
5 M 3 4 1

The complexity of the algorithm consists of the time it
takes to traverse the tree, the time it takes to compare two
subtrees, i.e. compute the function Match, and the time it
takes to compute the signatures. If exact match is
selected and the degree of the tree is bounded by a
constant, the algorithm performs in expected linear time.

One can easily see that the resulting table contains a
compressed form of the tree. The last step of the
algorithm is to walk through the table and extract the
patterns that satisfy a given frequency threshold. The
table is, first, sorted in order of descending certificates,
i.e. the first element of the table is the one that has the
highest certificate (this corresponds to the certificate of
the root). We use a recursive procedure to display the
components of each pattern. The frequency threshold can
be specified by the user. Future work should focus on
determining it automatically.

5. Pattern matching criteria
De Pauw et al. [2] studied situations where two

sequences of calls can be considered as instances of the
same pattern in object oriented systems. As a result they
presented a list of matching criteria. We found that some
of these criteria, namely, identity, repetition, depth-
limiting and commutativity can be applied to procedural
software systems as well. In this section, we explain these
criteria and introduce three new ones: utility, distance
and flattening. The design of the function Match depends
on the selected matching criteria. Some of these criteria
can be combined together. Future work should determine
how.

5.1 Identity
The identity criterion is probably the simplest one to

compute. Two sequences of calls are similar if they have
the same topology, which mean, they have the same call

structure, order of calls and so on. This criterion might
be useful for novices who wish to construct an initial
understanding of the trace.

5.2 Repetition
The number of repetitions of contiguous sequences of

calls does not really add too much value to the trace.
These repetitions can be ignored. For example, the two
subtrees of Figure 3 can be considered as instances of the
same pattern.

Figure 3. Repeated sequences can be ignored when

looking for patterns

5.3 Ordering
This matching criterion is based on the commutative

criterion presented in [2] without the restriction of
considering objects of the same classes only, since, we do
not deal with objects here. If the order of calls does not
matter to software engineers, then it can be ignored. To
generalize the algorithm to unordered trees, we need to
sort the certificates that appear in the signatures before
comparing them. If this criterion is used, it will certainly
be beneficial to users who already have a certain
understanding of the system. Future work should focus
on determining the importance of the order of calls
according to the tree levels where they occur. For
example, the order may not be important at the leaf level
where utility procedures are used. This is not necessary
the case at higher levels.

5.4 Depth-Limiting
Depth-limiting allows comparing two subtrees up to a

certain depth. The calls that are beyond this depth are
ignored. In a layered system, components of one layer
communicate with the components of the layer below.
Patterns of the same layer can be grouped together. This
is useful to users familiar with the system architecture.
We intend to experiment with different execution traces
to determine at which level of the trace tree this criterion
could be applied.

5.5 Utility
Utility procedures are domain independent routines

that implement specific tasks (e.g. sorting an array).
Users may decide to ignore them when comparing
patterns. There are different heuristics that are used to
detect such procedures (e.g. compute fan-in and fan-out).
Consider the two sequences of calls in Figure 4., where
u1, u2, u3 and u4 are utility procedures. These two
sequences can be considered similar if we decide to
ignore the utility procedures.

One way of implementing this concept is to group the
utility procedures in one subsystem and then go through
the trace and replace their occurrences by the name of
this subsystem. This results in a trace with a higher level
of abstraction.

Figure 4. These two sequences can be considered

similar if the utility procedures are ignored

5.6 Distance
Two patterns may have almost the same procedure

calls but slightly different structures. For example, a
control statement can lead to different execution paths
depending on the program inputs. That is, the same
program behavior might result in slightly different
sequences of procedure calls. We would like to be able to
group these sequences together as being one common
pattern. For this purpose, we need to evaluate the
difference between their structures. The tree edit distance
can be used [11]. This criterion might be useful to expert
users who are already familiar with the source code.

5.7 Flattening

This criterion does not consider the hierarchical
structure of the patterns at all. Instead, it flattens them
into a linear structure and compares them. If the same
calls exist more than once then they are reduced to one
occurrence. This subsumes most of the criteria presented
in this paper and will certainly result in a very good
compression rate. However, we need to analyze situations
where it could be applied usefully.

6. Conclusion and future work
Dynamic analysis is important to understand the

behavior of any software system whether it is based on
OO concepts or not. Dynamic analysis tools should be as
important as static analysis tools. In fact, the
combination of both provides, without any doubt, the best
solution to address program comprehension issues.

Patterns of procedure calls can be used to bridge the
gap between low-level system components and high-level
domain concepts. In this paper, we showed an algorithm
that extracts them in an efficient manner. We also
presented a set of matching criteria that can be used, in
conjunction with the ones presented in [2], to group
similar patterns. Future work should focus on validating
these criteria and classify their usage according the user’s
knowledge of the systems. The long term goal is to

determine heuristics that automatically select patterns
that most likely correspond to high-level concepts.

References
[1] T. Ball, “The concept of dynamic analysis”, ACM

SIGSOFT Software Engineering Notes, v.24 n.6, ,
Nov. 1999, pp.216-234

[2] W. De Pauw, D. Lorenz, J. Vlissides and M.
Wegman, “Execution Patterns in Object-Oriented
Visualization”, In Proceedings Conference on
Object-Oriented Technologies and Systems (COOTS
'98), USENIX, 1998, pp. 219-234

[3] J.P. Downey, R. Sethi and R.E. Tarjan, “Variations
on the common subexpression problem”, J. ACM.
27, 1980, pp. 758-771

[4] T. Eisenbarth, R. Koschke, and D. Simon, “Aiding
Program Comprehension by Static and Dynamic
Feature Analysis”, ICSM, 2001

[5] T. Eisenbarth, R. Koschke, D. Simon, “Feature-
Driven Program Understanding Using Concept
Analysis of Execution Traces”, IWPC, 2001

[6] P. Flajolet, P. Sipala, J.–M. Steyaert, “Analytic
variations on the common subexpression problem”,
In Automata, Languages, and Programming,
Springer-Verlag, 1990

[7] A. Hamou-Lhadj, T. C. Lethbridge, “Compression
Techniques to Simplify the Analysis of Large
Execution Traces”, IWPC, 2002

[8] D.F. Jerding, J.T. Stasko, T. Ball, “Visualizing
Interactions in Program Execution”, ICSE, 1997

[9] M. –A.D. Storey, K. Wong, H.A. Muller, “How Do
Program Understanding Tools Affect How
Programmers Understand Programs?”, WCRE, 1997

[10] E. Stroulia, and T, Systä, “Dynamic analysis for
reverse engineering and program understanding”,
ACM SIGAPP Applied Computing Review, 2002

[11] K. C. Tai, “The tree-to-tree correction problem”,
ACM, 26(3):422-433, 1979

[12] G. Valiente, “Simple and Efficient Tree Pattern
Matching”, Research report, Technical University of
Catalonia, E-08034, Barcelona, 2000

[13] N. Wilde and M. Scully, "Software Reconnaissance:
Mapping Program Features to Code", Journal of
Software Maintenance: Research and Practice,
1995, Vol. 7, pp. 49-62

[14] I. Zayour and T.C. Lethbridge, “A Cognitive and
User Centric Based Approach For Reverse
Engineering Tool Design”, CASCON, 2000

