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Abstract— Big Data Systems (BDS) are known to be complex, 

consisting of multiple interacting hardware and software 

components, such as distributed compute nodes, databases, 

middleware, etc. Any of these components can fail. Finding the 

root causes of such failures is an extremely laborious process. 

An analysis of logs, generated by a BDS during its operation, 

can speed up this process. The logs can also be used to improve 

testing processes, detect security breaches, customize 

operational profiles, and any other tasks that require the 

analysis of run-time data. However, the adoption of log 

analysis tools is hampered by practical challenges. The 

logs/logs emitted by a BDS can be thought of as Big Data 

themselves. In this paper, we report on the major issue areas 

commonly faced by practitioners when working with large 

logs. We also propose practical solutions, while highlighting 

the remaining challenges.  
 

Index Terms—Big Data Systems, Software Tracing and 

Logging,  

I. INTRODUCTION 

Big Data Systems (BDS) are complex and have many 

dynamic components including distributed computing 

nodes, networking, databases, middleware, a Business 

Intelligence (BI) layer, High Availability infrastructure, etc. 

Any of the components (and their interactions with others) 

can fail, leading to a crash of the system or quality 

degradation (e.g., performance, reliability, security). 

Finding a root cause of these problems is non-trivial, 

because BDS components depend on each other. For 

example, a database’s failure to access data might be caused 

not by a defect in the database, but by corruption in the 

underlying distributed storage systems. 

Typically, an analyst resorts to examining operational 

data, namely logs and traces, generated by the BDS 

components, trying to pinpoint the root cause of the 

problem. A log or a trace is a sequence of temporal events 

captured during a particular execution of a system. For 

example, a log can contain software execution paths, events 

triggered during software execution, or user activities. There 

is no clear distinction between logs and traces. Often the 

term log is used to represent the way a program is used 

(such as security logs), while tracing is used to capture a 

program’s elements that are invoked in a given execution of 

the system. Tracing is used for debugging and program 

understanding. In this paper, we use the terms logs and 

traces interchangeably.  

Logs have been shown to be essential in several software 

engineering tasks including debugging [1], defect analysis 

log [3]–[5], testing [6], detecting security breaches [7], and 

customizing operational profiles [8]. A good overview of 

the application domains of log analysis can be found in [19]. 

The authors discuss the applications of log analysis to 

performance analysis, security, prediction, and profiling.  

Independent of the data captured by the log and the log’s 

area of usage, there is a number of characteristics that all of 

these logs share. These characteristics make it difficult to 

work with logs in industrial settings.  Peculiarly, the same 

characteristics are used to describe the properties of Big 

Data. The characteristics are as follows. 

 Velocity: the data (in some cases) must be processed in 

real time.  

 Volume: mountain ranges of historical data. 

 Variety: captured data can be structured or 

unstructured.  

 Veracity: captured data must be cleaned.  

 Value: not all captured data are useful.  

Essentially, BDSs designed to process Big Data usually 

emit Big Data (captured in logs) themselves [9]. Of course, 

not all BDSs generate large volumes of logs. Also, small 

systems may generate a large amount of data. However, for 

most BDS-emitted logs, an analyst will observe at least one 

of the Big Data characteristics.  

The fundamental processes in leveraging log data include 

building solutions for delivering, storing, and “crunching” 

large volumes of data. Each of these processes comes with a 

myriad of challenges. In this paper, we draw on our 

experience working on analyzing large logs at both IBM 

and Ericsson in the context of industrial projects. More 

particularly, we discuss seven issues that practitioners in 

both companies constantly face when working with large 

logs: namely, storing logs, scalable analysis of log data, 

accurate capturing and replaying of logs, inadequate tooling 

for processing logs, and problems with classifying and 

formatting logs. We describe these issues by mapping to 

those commonly found in analyzing big data. We also 

discuss possible solutions.  

II. LOG ANALYSIS: RESEARCH CHALLENGES 

A.  Scarce Storage 

In this section, we describe issues that arise due to a large 

volume of logs that must be stored and compared. The first 
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issue arises while uploading a log to a remote storage 

facility for processing. Performing the analysis onsite is 

usually challenging because of the lack of resources and 

tools that can diagnose the cause of the problem onsite.  A 

log, even compressed by a mainstream archival utility, such 

as zip, can reach tens of gigabytes. If the log is collected in-

house, copying the file from the machine where the log was 

collected to the storage facility is a fast and straightforward 

task, as internal networks are typically fast. However, if the 

file is collected at a remote location, e.g., a customer site, 

the process becomes challenging due to network bandwidth 

caps and fragile connections. For example, a 50GB file 

transfer on a 1Gbit network, at best, will take approximately 

7 minutes, while it will take approximately 12 hours on a 

10Mbit network, and 5 days on a 1Mbit network. Note that 

multiple files may be uploaded simultaneously, further 

increasing the upload time. 

If the support team needs the file urgently (e.g., to 

diagnose a crash of a production BDS), shipping the log file 

via a courier on a physical storage device may be 

considered. Another option is to give the support team 

remote access to the customer site (if customer’s security 

policy permits this) to work with the file manually. 

However, this typically implies that the file must be 

processed manually; therefore, it does not speed up the 

automatic diagnostics. 

The second issue is related to the growth of the log 

repository. The number of logs grows rapidly as time 

passes. To illustrate this, consider the following two real-

world cases: In one case, a company is gathering logs from 

clients to automatically detect rediscovered (i.e., recurring) 

defects, speeding up problem diagnostics. They collect 

20,000 logs per year, ranging in size from 1KB to 100GB. 

The logs contain software execution data ranging from stack 

dump to full execution paths with parameter values. Their 

repository grows at a rate of 0.5PB a year. In another case, 

an advertisement company collects bidding logs on 

advertisement banners to detect fraudulent activity (robotic 

clicks). They track information from 1.5 billion requests 

(bids) per day, collecting 1.5PB of bidding logs per year. 

One possible solution to this problem is to distribute large 

logs on various storage devices. Storing large volumes of 

data is expensive, and multiple approaches to designing 

storage solutions exist. Ideally, all data should be kept in a 

repository where accessing the data can be done 

instantaneously, such as in in-memory (cache) databases. 

Unfortunately, large volumes of log data make this 

approach prohibitively expensive. To find a compromise 

between efficiency and cost, one puts 1) frequently accessed 

data on fast but expensive storage devices and 2) 

infrequently accessed data on slow but inexpensive storage 

devices. 

Another possibility is to design a storage solution where 

the amount of logs that must be stored can also be reduced. 

In the simplest form, logs older than a certain time 

threshold, e.g., three years, can be purged. However, this 

approach must be used carefully, as customers often 

rediscover old problems because many install fix-packs 

reluctantly. For example, we have seen defects being 

rediscovered by clients three years after a fix-pack, with the 

patch for the defect, was made available. 

We can also eliminate parts of logs that are not useful for 

analysis instead of eliminating a complete log. For example, 

if an execution log is used to find rediscovered (i.e., 

recurring) defects [10], a part of the execution path that 

represents the defect-specific code path may be kept and the 

rest may be eliminated. In some cases, this can be done 

online while the log is being processed for the first time. 

Offline log filtering is also possible, but this requires saving 

the original logs and expecting the users to eliminate 

undesirable parts. Log abstraction techniques exist (e.g., 

[11], [12]), allowing users to automatically reduce the log 

size, while keeping as much of the essence as possible (see 

Section II.F for details). Though they vary in design, most 

existing approaches focus on eliminating low-level 

implementation details, not always required to understand 

the behaviour of a complex scenario. How log abstraction 

can be used to solve specific maintenance tasks, such as 

defect discovery and bug fixing, is still unclear. 

Finally, sampling techniques have also been used to 

reduce the size of logs [18]. Sampling consists of selecting 

parts of a log instead of analyzing the entire content. The 

problem with sampling is that the resulting log may not 

contain all the information needed for analysis (e.g., rare 

events [19]). Moreover, many sampling approaches need 

manual tuning of parameters. Finding the right parameters 

can be a difficult task: if some parameters work well for one 

system, they might not work for another one. 

B.  Unscalable Log Analysis 

As mentioned above, detailed logs generated by a busy 

BDS can easily reach tens of terabytes. It can be attested, 

based on the authors’ practical experience, that crawling 

through such logs is laborious and expensive. For example, 

manual determination of a fault’s root cause can consume 

30– 40% of the total time needed to fix a problem [3]. 

Therefore, techniques must be leveraged from the domain of 

operational data/dynamic analysis, which can process large 

volumes of logs emitted by BDS components. Moreover, in 

some cases (e.g., to detect fraud or security threats), data 

emitted by BDSs must be processed in real-time, making 

velocity an important characteristic. 

Lossless log analysis techniques (e.g., representing a log 

as a Final State Automata [4] or Signal [13]) are accurate 

but not scalable [14] (as they must deal with large volumes 

of uncompressed logs); lossy techniques are scalable, but 

not universal [14]. 

For example, a single log must be compared against a 

library of reference logs, say, to identify a recurring defect. 

If the library contains 1 PB of logs, simply reading these 

logs into memory for the purpose of comparison will take a 

significant amount of time (even in parallel on multiple 

computers). 

To accelerate the comparisons, an iterative approach must 

be used, such as the scalable iterative-unfolding technique 



 

 

(SIFT) [14]. The logs are first compacted using various 

lossy compression techniques: the higher the compression, 

the smaller the amount of information remaining and the 

faster the comparison. Then, logs are iteratively compared at 

different levels of compression, from high (where 

processing is fastest) to low (where processing is slowest). 

The process rapidly eliminates dissimilar logs, eventually 

leaving residual, similar logs at the lowest level of 

compaction. Identified similar logs can be passed to external 

tools for further analysis. Typically, logs would be stored at 

the highest level of compaction in hot storage, at 

intermediate levels in warm storage, and at the lowest levels 

in cold storage. 

Comparison techniques, such as SIFT, can be 

parallelized. A single log comparison against a library of 

logs, e.g., for defect detection [14], is an “embarrassingly 

parallel” task (because comparisons of each pair of logs are 

independent of each other). Therefore, the comparison can 

be easily parallelized using the MapReduce programing 

model (e.g., using the Apache Hadoop platform). If 

interactions between comparison processes are required, 

e.g., for clustering logs to improve testing [14], the Apache 

Spark (or a similar) platform is better suited. 

The existing commercial solutions, such as Chukwa, HP 

IT Operations Analytics, IBM Operations Analytics – Log 

Analysis, and Splunk, use MapReduce to analyze and 

visualize different types of log data. They take logs from 

various sources as input data and index them as a structural 

schema data. Then, the query-like programming which is 

similar to SQL is performed on the structural schema data. 

C.  Inaccurate Capture-Replay 

This section discusses the accurate capturing of logs on a 

production system and replaying/aligning them on a test 

system to ensure accurate testing and diagnostics. BDS 

components talk to each other, with their subcomponents 

distributed through a cluster of computers. Additionally, 

each BDS component may have multiple processes and 

threads running in parallel, adding to the complexity. Large 

volumes of logs on a busy BDS are generated with high 

velocity. 

The larger the volume and velocity, the higher the 

contribution of the observer effect, which describes a 

phenomenon of changing the system while measuring its 

attributes. For example, when tire pressure is measured 

using a tire pressure gauge, some air escapes from the tire, 

changing the tire pressure. 

In BDS systems, enabling tracing mechanisms leads to a 

system slowdown, as extra resources must be allocated to 

capture and store the log. The higher the intensity of the 

workload, the higher the observer effect, as more resources 

will be needed to capture the activities. This becomes 

especially important when trying to capture data for a 

heisenbug, e.g., a timing-related one: when the system slows 

down, the timing problems may disappear, as the chance of 

race conditions, deadlocks, etc. will decrease. 

Thus, it is important to build capturing infrastructure that 

will minimize the observer effect. Essentially, a tracing 

infrastructure should not slow down the BDS significantly. 

Software- and hardware-based solutions exist, many of 

which are platform-specific. Typically, software systems are 

more prone to the observer effect, but are more universal. 

Hardware systems, on the other hand, tend to be less 

intrusive, but are very platform-specific. Let us look at some 

of the readily available tooling. 

Software-based logging solutions can be grouped into 

four categories: 

 Integrated into an Operating System (OS);  

 Compiler-based tooling;  

 Custom build loggers;  

 Specialized solutions.  

OS-level tooling appears in multiple OSs. For example, a 

framework called DTrace exists, which, once enabled, 

captures the execution path of a program in real time. The 

developer need not make any modifications to the code to 

enable this instrumentation. It is available as part of the 

BSD kernel, making the tool available on Solaris, Mac OS 

X, FreeBSD, and NetBSD OSs. An unofficial port also 

exists from DTrace to Linux kernel. 

Compiler-based tools exist that capture information about 

code execution. For example, Intel Compiler Code 

Coverage or GNU gcov can capture information about 

executed code blocks. The code must be recompiled to 

enable this tooling. The overhead associated with the 

tooling is low, but captured data are limited, as information 

about the sequence in which code blocks are executed and 

about what data is passed from code block to code block is 

lost. 

On the other side of the spectrum, tools, such as Intel 

Parallel Studio (IPS), exist to capture information from 

multi-threaded programs, track the state of shared memory, 

etc. The tool is extremely useful for capturing and 

diagnosing problems in multi-process and thread 

environments. Unfortunately, the observer effect of the IPS 

is very pronounced, as performance degradation can reach 

multiple magnitudes. 

Custom-built solutions, by construction, vary widely. In 

this case, developers build logging infrastructure from 

scratch or re-use language-specific logging libraries (such as 

Apache log4j). Hence, a developer must instrument the code 

with probe points manually, specifying information that 

must be captured at every probe point. Typically, probe 

points are located near the entries and exits to the functions 

and near important branching points. 

Specialized solutions are capable of capturing specialized 

types of logs and are less universal than the above-described 

categories of logs. For example, in the database area, tools 

exist (such as IBM InfoSphere Optim Workload Replay and 

Oracle Database Replay) for capturing workloads on a 

production system and replaying them on a test system to 

ensure accurate system testing. The tools work with 

minimal intrusion and slowdown and they can often be 

configured so the information about the workload is read 

directly off network cards. However, the tooling will not 

capture low-level information about what is happening in 

the database engine. 

Hardware-based logging can also be used. In this case, 

the information about execution logs is captured at the 



 

 

hardware level, minimizing the observer effect; in addition, 

information is available at a very low level (often at the 

level of CPU instructions). For example, IBM Mainframe’s 

z/OS can capture system- and transaction-level logs. Intel 

has been working on building processor-level tracing into 

their products [15], but no commercial offering exists at this 

stage. 

Regarding log replay, there are currently more questions 

than answers. As discussed above, specialized tools in the 

database area allow both workload capturing and replaying. 

However, they focus on relational databases. There is a need 

for tools that can capture intensive production workloads of 

BDSs and replay them on the test system in the presence of 

data obfuscation. Likewise, tools for other components of 

BDSs, such as a BI layer, are required. There is also a need 

for a general strategy for scaling down the workload. If, say, 

the test system is 10 times smaller than the production 

system, does this mean (in terms of: number of concurrent 

connections, operations per unit of time, etc.) the workload 

should be reduced by 10 times? 

D.  Inadequate Tooling for Instrumenting BDS Source Code 

The volume problem manifests itself not only in the large 

volume of data generated by the BDS itself, but also in the 

large volume of BDS components’ source codes that must 

be instrumented. 

Enterprise-level software consists of millions of lines of 

source code; not every tool is capable of handling such 

volumes. Typically, this will be manifested by a crash of the 

instrumented code, a return of incorrect results, dramatic 

performance degradation, etc. These symptoms can be 

caused by various factors, e.g., the observer effect (tooling 

interferes with normal component execution), scalability 

(overflows in internal tooling data structures), and incorrect 

code instrumentation (due to issues with tooling’s code 

parsers). 

Tool vendors are typically open to fixing the problems. 

Unfortunately, BDS component developers may be unable 

to share their source code due to non-disclosure agreements, 

In this case BDS developers have to build self-contained 

test cases that can be passed to the tool developers in 

question, which is laborious. 

Performance degradation caused by the log capturing 

tools may exacerbate the observer effect (discussed in the 

previous section). In addition, customers may not permit the 

use of such slow tools with their production systems. 

Even in the case of in-house test systems, performance 

may be important. For example, we may run nightly 

regression tests in parallel on 100 computers to complete 

test executions by morning. Capturing execution logs from 

the test executions helps to diagnose automatically the root 

causes of test failures. However, even a 50% performance 

degradation (due to code instrumentation) would require 50 

additional computers for regression tests runs, increasing 

test cost significantly. 

E.  Incorrect Log Classification 

Once the logs to the central repository are captured and 

uploaded, they must be cleaned due to the veracity of the 

logs being captured. It must also be ensured that only 

required logs are kept for future analysis and classification, 

as not all logs have value. 

Consider the following use case. A log was collected to 

diagnose the problem, but whether the log captured the root 

cause of the problem is uncertain. A number of reasons exist 

for why the problem cannot be captured reliably. In the 

simplest case, when the software crashes and a stack dump 

is gathered, the root cause can typically be captured on the 

first try (unless we have an extremely pathological case 

leading to stack corruption). However, if we are trying to 

capture a root cause of an intermittent defect, a test case 

may need to be run multiple times to capture the problem. 

For example, the problem can be caused by a heisenbug and 

because “stars do not align” to trigger it the first time. 

Alternatively, because log-capturing tooling for some 

components of the BDS must be disabled (to minimize 

performance degradation); by Murphy’s Law, these were 

the components required for problem diagnostics. 

Unfortunately, the logs from all the tries will often be 

loaded to the storage facility. This makes supervised 

classification problematic, as which logs contain defect 

patterns (and have value) and which do not (and are 

worthless) are often unknown. Without knowing this 

information, the classification models’ accuracy reduces 

significantly, as all logs associated with a given problem 

must be classified as logs that contain information about 

root causes (even though this is not always the case), 

confusing the classifier. 

In this case, manual intervention is often required. 

Developers need to eliminate manually the worthless logs. 

A person responsible for maintaining the data repository in 

a clean and consistent state must be selected. This person 

must follow up with developers and testers, ensuring that 

only valuable logs are kept. 

F.  Variety of Log Formats 

As discussed in Sections I and II.C, a BDS consists of 

multiple software and hardware components. Even though 

universal formats exist [11], [16], [17], they are not widely 

used. Therefore, these components will emit heterogeneous 

logs in a variety of formats. 

To perform the analysis, all logs need to be converted to 

one unified representation. Typically, log analysis tool 

developers resort to building converters for each data 

format. However, no universal converter exists. 

In addition, current universal formats have limitations. 

For example, the Knowledge Discovery Metamodel (KDM) 

[16] is an Object Management Group standard that supports 

tracing but does not support any compaction mechanism. In 

other words, a log will be represented in its original format, 

which hinders scalability. The Compact Trace Format 

(CTF) [12] is an example of a metamodel that models log 

information in a compact way (compacted logs can be 

compared without being “uncompacted”). It is however 

limited to simple function call traces. The CTF uses a graph 

theory concept to turn a routine call tree into an ordered 

directed acyclic (DAG) graph by representing similar sub-

trees only once. This way, a log should never be saved as a 



 

 

tree but rather as a DAG. The authors of the CTF showed 

this compaction technique scales well to large logs. 

However, although the CTF has been extended to support 

multi-process systems [12], it is still not expressive enough 

to be widely deployed. For example, it lacks supports for 

function arguments, statements, etc. 

Creating a universal log format to support all kinds of 

logs is challenging and even if successful, this format may 

end up being ineffective. This is because the need for a log 

type depends on the application domain. Take, for example, 

logs of system calls. These are used extensively in security 

(anomaly detection in particular) and in understanding how 

applications interact with the OS. These logs may be of little 

use for analysts who wish to understand the application 

design. Perhaps the objective should be to create 

standardized formats for different application domains yet 

to be defined. Another solution would be to develop 

analysis techniques that operate on common data such event 

timestamps. We anticipate, however, that such information 

can be used for limited purposes.  

G. Inadequate Privacy of Sensitive Data 

Due to space constraint, we briefly highlight some key 

issues that relate to the veracity of sensitive data captured in 

a log, e.g., usernames, passwords, and credit card numbers. 

The first issue is related to system debugging. One can 

use logs from production system (see [20]) to reproduce a 

bug exposed on production system in a lab environment, as 

discussed in Section II.C. Existing bug reproduction 

techniques rely on instrumenting the system in order to 

capture objects and other system components at run-time. 

When a faulty behaviour occurs in the field, the stored 

objects and often the entire memory dump are sent to the 

developers to reproduce the crash. Unfortunately, the 

collected objects may contain sensitive information causing 

customer privacy issues.  

One solution to this issue is using obfuscation and 

anonymization techniques. Some logging frameworks have 

rule-based extensions that obfuscate or remove sensitive 

data before it is stored in the log. However, such an 

approach is not entirely error-proof, because it depends on 

the accuracy of detection rules, which often change as the 

BDS source code evolves. Potentially, in the future, a tool 

will be created that would automatically and accurately 

recognize sensitive data and obfuscate it while in progress. 

Another issue comes from the fact that due to legal 

constraints, a user may be unable to share the log with a 

BDS manufacturer (this is the case with, e.g., financial or 

military organizations). There are two solutions to this issue. 

The first is to provide a standalone version of a log 

processing and analysis tool to the client. This tool should 

be able to analyze the trace/log remotely, without requiring 

any external information. The feasibility of this solution 

would depend on the amount of storage and computing 

power required by the tool.  

The second solution is to encrypt the log using 

homomorphic encryption, so the BDS manufacturer can 

perform the analysis without being able to extract sensitive 

information from the log. However, this solution is very 

computationally expensive and is not practical at this stage. 

III. SUMMARY 

In this paper, seven areas of issues that practitioners face 

while building solutions for storing and processing the logs 

were discussed. The root causes of the issues lie in the 

characteristics of the logs. We highlighted existing solutions 

to the issues and posed unanswered questions, based on the 

authors’ experience as well as the interactions they had with 

industrial partners building such solutions. 

We believe that issues and solutions discussed in this 

paper are of interest to practitioners, as they can readily 

leverage existing techniques to build their own solutions. 

The findings are also of interest to the academic community, 

as they highlight practical problems that remain unsolved. 
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