

Operational Log Analysis for Big Data Systems:

Challenges and Solutions

Andriy Miranskyy, Member, IEEE, Abdelwahab Hamou-Lhadj, Member, IEEE, Enzo Cialini, and Alf Larsson

Abstract— Big Data Systems (BDS) are known to be complex,

consisting of multiple interacting hardware and software

components, such as distributed compute nodes, databases,

middleware, etc. Any of these components can fail. Finding the

root causes of such failures is an extremely laborious process.

An analysis of logs, generated by a BDS during its operation,

can speed up this process. The logs can also be used to improve

testing processes, detect security breaches, customize

operational profiles, and any other tasks that require the

analysis of run-time data. However, the adoption of log

analysis tools is hampered by practical challenges. The

logs/logs emitted by a BDS can be thought of as Big Data

themselves. In this paper, we report on the major issue areas

commonly faced by practitioners when working with large

logs. We also propose practical solutions, while highlighting

the remaining challenges.

Index Terms—Big Data Systems, Software Tracing and

Logging,

I. INTRODUCTION

Big Data Systems (BDS) are complex and have many

dynamic components including distributed computing

nodes, networking, databases, middleware, a Business

Intelligence (BI) layer, High Availability infrastructure, etc.

Any of the components (and their interactions with others)

can fail, leading to a crash of the system or quality

degradation (e.g., performance, reliability, security).

Finding a root cause of these problems is non-trivial,

because BDS components depend on each other. For

example, a database’s failure to access data might be caused

not by a defect in the database, but by corruption in the

underlying distributed storage systems.

Typically, an analyst resorts to examining operational

data, namely logs and traces, generated by the BDS

components, trying to pinpoint the root cause of the

problem. A log or a trace is a sequence of temporal events

captured during a particular execution of a system. For

example, a log can contain software execution paths, events

triggered during software execution, or user activities. There

is no clear distinction between logs and traces. Often the

term log is used to represent the way a program is used

(such as security logs), while tracing is used to capture a

program’s elements that are invoked in a given execution of

the system. Tracing is used for debugging and program

understanding. In this paper, we use the terms logs and

traces interchangeably.

Logs have been shown to be essential in several software

engineering tasks including debugging [1], defect analysis

log [3]–[5], testing [6], detecting security breaches [7], and

customizing operational profiles [8]. A good overview of

the application domains of log analysis can be found in [19].

The authors discuss the applications of log analysis to

performance analysis, security, prediction, and profiling.

Independent of the data captured by the log and the log’s

area of usage, there is a number of characteristics that all of

these logs share. These characteristics make it difficult to

work with logs in industrial settings. Peculiarly, the same

characteristics are used to describe the properties of Big

Data. The characteristics are as follows.

 Velocity: the data (in some cases) must be processed in

real time.

 Volume: mountain ranges of historical data.

 Variety: captured data can be structured or

unstructured.

 Veracity: captured data must be cleaned.

 Value: not all captured data are useful.

Essentially, BDSs designed to process Big Data usually

emit Big Data (captured in logs) themselves [9]. Of course,

not all BDSs generate large volumes of logs. Also, small

systems may generate a large amount of data. However, for

most BDS-emitted logs, an analyst will observe at least one

of the Big Data characteristics.

The fundamental processes in leveraging log data include

building solutions for delivering, storing, and “crunching”

large volumes of data. Each of these processes comes with a

myriad of challenges. In this paper, we draw on our

experience working on analyzing large logs at both IBM

and Ericsson in the context of industrial projects. More

particularly, we discuss seven issues that practitioners in

both companies constantly face when working with large

logs: namely, storing logs, scalable analysis of log data,

accurate capturing and replaying of logs, inadequate tooling

for processing logs, and problems with classifying and

formatting logs. We describe these issues by mapping to

those commonly found in analyzing big data. We also

discuss possible solutions.

II. LOG ANALYSIS: RESEARCH CHALLENGES

A. Scarce Storage

In this section, we describe issues that arise due to a large

volume of logs that must be stored and compared. The first

A. Miranskyy is with the Department of Computer Science, Ryerson,
University, Toronto, ON, Canada (e-mail: avm@ryerson.ca).

A. Hamou-Lhadj is with the Department of Electrical and Computer
Engineering, Concordia University, Montreal, QC, Canada (e-mail:

wahab.hamou-lhadj@concordia.ca).

E. Cialini is with IBM, Toronto, ON, Canada (e-mail:

ecialini@ca.ibm.com).

Alf Larsson is with Ericsson, Stockholm, Sweden (e-mail:

alf.larsson@ericsson.com).

issue arises while uploading a log to a remote storage

facility for processing. Performing the analysis onsite is

usually challenging because of the lack of resources and

tools that can diagnose the cause of the problem onsite. A

log, even compressed by a mainstream archival utility, such

as zip, can reach tens of gigabytes. If the log is collected in-

house, copying the file from the machine where the log was

collected to the storage facility is a fast and straightforward

task, as internal networks are typically fast. However, if the

file is collected at a remote location, e.g., a customer site,

the process becomes challenging due to network bandwidth

caps and fragile connections. For example, a 50GB file

transfer on a 1Gbit network, at best, will take approximately

7 minutes, while it will take approximately 12 hours on a

10Mbit network, and 5 days on a 1Mbit network. Note that

multiple files may be uploaded simultaneously, further

increasing the upload time.

If the support team needs the file urgently (e.g., to

diagnose a crash of a production BDS), shipping the log file

via a courier on a physical storage device may be

considered. Another option is to give the support team

remote access to the customer site (if customer’s security

policy permits this) to work with the file manually.

However, this typically implies that the file must be

processed manually; therefore, it does not speed up the

automatic diagnostics.

The second issue is related to the growth of the log

repository. The number of logs grows rapidly as time

passes. To illustrate this, consider the following two real-

world cases: In one case, a company is gathering logs from

clients to automatically detect rediscovered (i.e., recurring)

defects, speeding up problem diagnostics. They collect

20,000 logs per year, ranging in size from 1KB to 100GB.

The logs contain software execution data ranging from stack

dump to full execution paths with parameter values. Their

repository grows at a rate of 0.5PB a year. In another case,

an advertisement company collects bidding logs on

advertisement banners to detect fraudulent activity (robotic

clicks). They track information from 1.5 billion requests

(bids) per day, collecting 1.5PB of bidding logs per year.

One possible solution to this problem is to distribute large

logs on various storage devices. Storing large volumes of

data is expensive, and multiple approaches to designing

storage solutions exist. Ideally, all data should be kept in a

repository where accessing the data can be done

instantaneously, such as in in-memory (cache) databases.

Unfortunately, large volumes of log data make this

approach prohibitively expensive. To find a compromise

between efficiency and cost, one puts 1) frequently accessed

data on fast but expensive storage devices and 2)

infrequently accessed data on slow but inexpensive storage

devices.

Another possibility is to design a storage solution where

the amount of logs that must be stored can also be reduced.

In the simplest form, logs older than a certain time

threshold, e.g., three years, can be purged. However, this

approach must be used carefully, as customers often

rediscover old problems because many install fix-packs

reluctantly. For example, we have seen defects being

rediscovered by clients three years after a fix-pack, with the

patch for the defect, was made available.

We can also eliminate parts of logs that are not useful for

analysis instead of eliminating a complete log. For example,

if an execution log is used to find rediscovered (i.e.,

recurring) defects [10], a part of the execution path that

represents the defect-specific code path may be kept and the

rest may be eliminated. In some cases, this can be done

online while the log is being processed for the first time.

Offline log filtering is also possible, but this requires saving

the original logs and expecting the users to eliminate

undesirable parts. Log abstraction techniques exist (e.g.,

[11], [12]), allowing users to automatically reduce the log

size, while keeping as much of the essence as possible (see

Section II.F for details). Though they vary in design, most

existing approaches focus on eliminating low-level

implementation details, not always required to understand

the behaviour of a complex scenario. How log abstraction

can be used to solve specific maintenance tasks, such as

defect discovery and bug fixing, is still unclear.

Finally, sampling techniques have also been used to

reduce the size of logs [18]. Sampling consists of selecting

parts of a log instead of analyzing the entire content. The

problem with sampling is that the resulting log may not

contain all the information needed for analysis (e.g., rare

events [19]). Moreover, many sampling approaches need

manual tuning of parameters. Finding the right parameters

can be a difficult task: if some parameters work well for one

system, they might not work for another one.

B. Unscalable Log Analysis

As mentioned above, detailed logs generated by a busy

BDS can easily reach tens of terabytes. It can be attested,

based on the authors’ practical experience, that crawling

through such logs is laborious and expensive. For example,

manual determination of a fault’s root cause can consume

30– 40% of the total time needed to fix a problem [3].

Therefore, techniques must be leveraged from the domain of

operational data/dynamic analysis, which can process large

volumes of logs emitted by BDS components. Moreover, in

some cases (e.g., to detect fraud or security threats), data

emitted by BDSs must be processed in real-time, making

velocity an important characteristic.

Lossless log analysis techniques (e.g., representing a log

as a Final State Automata [4] or Signal [13]) are accurate

but not scalable [14] (as they must deal with large volumes

of uncompressed logs); lossy techniques are scalable, but

not universal [14].

For example, a single log must be compared against a

library of reference logs, say, to identify a recurring defect.

If the library contains 1 PB of logs, simply reading these

logs into memory for the purpose of comparison will take a

significant amount of time (even in parallel on multiple

computers).

To accelerate the comparisons, an iterative approach must

be used, such as the scalable iterative-unfolding technique

(SIFT) [14]. The logs are first compacted using various

lossy compression techniques: the higher the compression,

the smaller the amount of information remaining and the

faster the comparison. Then, logs are iteratively compared at

different levels of compression, from high (where

processing is fastest) to low (where processing is slowest).

The process rapidly eliminates dissimilar logs, eventually

leaving residual, similar logs at the lowest level of

compaction. Identified similar logs can be passed to external

tools for further analysis. Typically, logs would be stored at

the highest level of compaction in hot storage, at

intermediate levels in warm storage, and at the lowest levels

in cold storage.

Comparison techniques, such as SIFT, can be

parallelized. A single log comparison against a library of

logs, e.g., for defect detection [14], is an “embarrassingly

parallel” task (because comparisons of each pair of logs are

independent of each other). Therefore, the comparison can

be easily parallelized using the MapReduce programing

model (e.g., using the Apache Hadoop platform). If

interactions between comparison processes are required,

e.g., for clustering logs to improve testing [14], the Apache

Spark (or a similar) platform is better suited.

The existing commercial solutions, such as Chukwa, HP

IT Operations Analytics, IBM Operations Analytics – Log

Analysis, and Splunk, use MapReduce to analyze and

visualize different types of log data. They take logs from

various sources as input data and index them as a structural

schema data. Then, the query-like programming which is

similar to SQL is performed on the structural schema data.

C. Inaccurate Capture-Replay

This section discusses the accurate capturing of logs on a

production system and replaying/aligning them on a test

system to ensure accurate testing and diagnostics. BDS

components talk to each other, with their subcomponents

distributed through a cluster of computers. Additionally,

each BDS component may have multiple processes and

threads running in parallel, adding to the complexity. Large

volumes of logs on a busy BDS are generated with high

velocity.

The larger the volume and velocity, the higher the

contribution of the observer effect, which describes a

phenomenon of changing the system while measuring its

attributes. For example, when tire pressure is measured

using a tire pressure gauge, some air escapes from the tire,

changing the tire pressure.

In BDS systems, enabling tracing mechanisms leads to a

system slowdown, as extra resources must be allocated to

capture and store the log. The higher the intensity of the

workload, the higher the observer effect, as more resources

will be needed to capture the activities. This becomes

especially important when trying to capture data for a

heisenbug, e.g., a timing-related one: when the system slows

down, the timing problems may disappear, as the chance of

race conditions, deadlocks, etc. will decrease.

Thus, it is important to build capturing infrastructure that

will minimize the observer effect. Essentially, a tracing

infrastructure should not slow down the BDS significantly.

Software- and hardware-based solutions exist, many of

which are platform-specific. Typically, software systems are

more prone to the observer effect, but are more universal.

Hardware systems, on the other hand, tend to be less

intrusive, but are very platform-specific. Let us look at some

of the readily available tooling.

Software-based logging solutions can be grouped into

four categories:

 Integrated into an Operating System (OS);

 Compiler-based tooling;

 Custom build loggers;

 Specialized solutions.

OS-level tooling appears in multiple OSs. For example, a

framework called DTrace exists, which, once enabled,

captures the execution path of a program in real time. The

developer need not make any modifications to the code to

enable this instrumentation. It is available as part of the

BSD kernel, making the tool available on Solaris, Mac OS

X, FreeBSD, and NetBSD OSs. An unofficial port also

exists from DTrace to Linux kernel.

Compiler-based tools exist that capture information about

code execution. For example, Intel Compiler Code

Coverage or GNU gcov can capture information about

executed code blocks. The code must be recompiled to

enable this tooling. The overhead associated with the

tooling is low, but captured data are limited, as information

about the sequence in which code blocks are executed and

about what data is passed from code block to code block is

lost.

On the other side of the spectrum, tools, such as Intel

Parallel Studio (IPS), exist to capture information from

multi-threaded programs, track the state of shared memory,

etc. The tool is extremely useful for capturing and

diagnosing problems in multi-process and thread

environments. Unfortunately, the observer effect of the IPS

is very pronounced, as performance degradation can reach

multiple magnitudes.

Custom-built solutions, by construction, vary widely. In

this case, developers build logging infrastructure from

scratch or re-use language-specific logging libraries (such as

Apache log4j). Hence, a developer must instrument the code

with probe points manually, specifying information that

must be captured at every probe point. Typically, probe

points are located near the entries and exits to the functions

and near important branching points.

Specialized solutions are capable of capturing specialized

types of logs and are less universal than the above-described

categories of logs. For example, in the database area, tools

exist (such as IBM InfoSphere Optim Workload Replay and

Oracle Database Replay) for capturing workloads on a

production system and replaying them on a test system to

ensure accurate system testing. The tools work with

minimal intrusion and slowdown and they can often be

configured so the information about the workload is read

directly off network cards. However, the tooling will not

capture low-level information about what is happening in

the database engine.

Hardware-based logging can also be used. In this case,

the information about execution logs is captured at the

hardware level, minimizing the observer effect; in addition,

information is available at a very low level (often at the

level of CPU instructions). For example, IBM Mainframe’s

z/OS can capture system- and transaction-level logs. Intel

has been working on building processor-level tracing into

their products [15], but no commercial offering exists at this

stage.

Regarding log replay, there are currently more questions

than answers. As discussed above, specialized tools in the

database area allow both workload capturing and replaying.

However, they focus on relational databases. There is a need

for tools that can capture intensive production workloads of

BDSs and replay them on the test system in the presence of

data obfuscation. Likewise, tools for other components of

BDSs, such as a BI layer, are required. There is also a need

for a general strategy for scaling down the workload. If, say,

the test system is 10 times smaller than the production

system, does this mean (in terms of: number of concurrent

connections, operations per unit of time, etc.) the workload

should be reduced by 10 times?

D. Inadequate Tooling for Instrumenting BDS Source Code

The volume problem manifests itself not only in the large

volume of data generated by the BDS itself, but also in the

large volume of BDS components’ source codes that must

be instrumented.

Enterprise-level software consists of millions of lines of

source code; not every tool is capable of handling such

volumes. Typically, this will be manifested by a crash of the

instrumented code, a return of incorrect results, dramatic

performance degradation, etc. These symptoms can be

caused by various factors, e.g., the observer effect (tooling

interferes with normal component execution), scalability

(overflows in internal tooling data structures), and incorrect

code instrumentation (due to issues with tooling’s code

parsers).

Tool vendors are typically open to fixing the problems.

Unfortunately, BDS component developers may be unable

to share their source code due to non-disclosure agreements,

In this case BDS developers have to build self-contained

test cases that can be passed to the tool developers in

question, which is laborious.

Performance degradation caused by the log capturing

tools may exacerbate the observer effect (discussed in the

previous section). In addition, customers may not permit the

use of such slow tools with their production systems.

Even in the case of in-house test systems, performance

may be important. For example, we may run nightly

regression tests in parallel on 100 computers to complete

test executions by morning. Capturing execution logs from

the test executions helps to diagnose automatically the root

causes of test failures. However, even a 50% performance

degradation (due to code instrumentation) would require 50

additional computers for regression tests runs, increasing

test cost significantly.

E. Incorrect Log Classification

Once the logs to the central repository are captured and

uploaded, they must be cleaned due to the veracity of the

logs being captured. It must also be ensured that only

required logs are kept for future analysis and classification,

as not all logs have value.

Consider the following use case. A log was collected to

diagnose the problem, but whether the log captured the root

cause of the problem is uncertain. A number of reasons exist

for why the problem cannot be captured reliably. In the

simplest case, when the software crashes and a stack dump

is gathered, the root cause can typically be captured on the

first try (unless we have an extremely pathological case

leading to stack corruption). However, if we are trying to

capture a root cause of an intermittent defect, a test case

may need to be run multiple times to capture the problem.

For example, the problem can be caused by a heisenbug and

because “stars do not align” to trigger it the first time.

Alternatively, because log-capturing tooling for some

components of the BDS must be disabled (to minimize

performance degradation); by Murphy’s Law, these were

the components required for problem diagnostics.

Unfortunately, the logs from all the tries will often be

loaded to the storage facility. This makes supervised

classification problematic, as which logs contain defect

patterns (and have value) and which do not (and are

worthless) are often unknown. Without knowing this

information, the classification models’ accuracy reduces

significantly, as all logs associated with a given problem

must be classified as logs that contain information about

root causes (even though this is not always the case),

confusing the classifier.

In this case, manual intervention is often required.

Developers need to eliminate manually the worthless logs.

A person responsible for maintaining the data repository in

a clean and consistent state must be selected. This person

must follow up with developers and testers, ensuring that

only valuable logs are kept.

F. Variety of Log Formats

As discussed in Sections I and II.C, a BDS consists of

multiple software and hardware components. Even though

universal formats exist [11], [16], [17], they are not widely

used. Therefore, these components will emit heterogeneous

logs in a variety of formats.

To perform the analysis, all logs need to be converted to

one unified representation. Typically, log analysis tool

developers resort to building converters for each data

format. However, no universal converter exists.

In addition, current universal formats have limitations.

For example, the Knowledge Discovery Metamodel (KDM)

[16] is an Object Management Group standard that supports

tracing but does not support any compaction mechanism. In

other words, a log will be represented in its original format,

which hinders scalability. The Compact Trace Format

(CTF) [12] is an example of a metamodel that models log

information in a compact way (compacted logs can be

compared without being “uncompacted”). It is however

limited to simple function call traces. The CTF uses a graph

theory concept to turn a routine call tree into an ordered

directed acyclic (DAG) graph by representing similar sub-

trees only once. This way, a log should never be saved as a

tree but rather as a DAG. The authors of the CTF showed

this compaction technique scales well to large logs.

However, although the CTF has been extended to support

multi-process systems [12], it is still not expressive enough

to be widely deployed. For example, it lacks supports for

function arguments, statements, etc.

Creating a universal log format to support all kinds of

logs is challenging and even if successful, this format may

end up being ineffective. This is because the need for a log

type depends on the application domain. Take, for example,

logs of system calls. These are used extensively in security

(anomaly detection in particular) and in understanding how

applications interact with the OS. These logs may be of little

use for analysts who wish to understand the application

design. Perhaps the objective should be to create

standardized formats for different application domains yet

to be defined. Another solution would be to develop

analysis techniques that operate on common data such event

timestamps. We anticipate, however, that such information

can be used for limited purposes.

G. Inadequate Privacy of Sensitive Data

Due to space constraint, we briefly highlight some key

issues that relate to the veracity of sensitive data captured in

a log, e.g., usernames, passwords, and credit card numbers.

The first issue is related to system debugging. One can

use logs from production system (see [20]) to reproduce a

bug exposed on production system in a lab environment, as

discussed in Section II.C. Existing bug reproduction

techniques rely on instrumenting the system in order to

capture objects and other system components at run-time.

When a faulty behaviour occurs in the field, the stored

objects and often the entire memory dump are sent to the

developers to reproduce the crash. Unfortunately, the

collected objects may contain sensitive information causing

customer privacy issues.

One solution to this issue is using obfuscation and

anonymization techniques. Some logging frameworks have

rule-based extensions that obfuscate or remove sensitive

data before it is stored in the log. However, such an

approach is not entirely error-proof, because it depends on

the accuracy of detection rules, which often change as the

BDS source code evolves. Potentially, in the future, a tool

will be created that would automatically and accurately

recognize sensitive data and obfuscate it while in progress.

Another issue comes from the fact that due to legal

constraints, a user may be unable to share the log with a

BDS manufacturer (this is the case with, e.g., financial or

military organizations). There are two solutions to this issue.

The first is to provide a standalone version of a log

processing and analysis tool to the client. This tool should

be able to analyze the trace/log remotely, without requiring

any external information. The feasibility of this solution

would depend on the amount of storage and computing

power required by the tool.

The second solution is to encrypt the log using

homomorphic encryption, so the BDS manufacturer can

perform the analysis without being able to extract sensitive

information from the log. However, this solution is very

computationally expensive and is not practical at this stage.

III. SUMMARY

In this paper, seven areas of issues that practitioners face

while building solutions for storing and processing the logs

were discussed. The root causes of the issues lie in the

characteristics of the logs. We highlighted existing solutions

to the issues and posed unanswered questions, based on the

authors’ experience as well as the interactions they had with

industrial partners building such solutions.

We believe that issues and solutions discussed in this

paper are of interest to practitioners, as they can readily

leverage existing techniques to build their own solutions.

The findings are also of interest to the academic community,

as they highlight practical problems that remain unsolved.

REFERENCES

[1]. A.Oliner and J.Stearley, “What Supercomputers Say: A

Study of Five System Logs,” in Proc. 37th Annual

IEEE/IFIP International Conference on Dependable Systems

and Networks, 2007. DSN ’07, 2007, pp. 575–584.

[2]. S.S.Murtaza, A.Hamou-Lhadj, N.H.Madhavji, M.Gittens,

“An empirical study on the use of mutant traces for diagnosis

of faults in deployed systems,” J. Syst. Softw., vol. 90, pp.

29–44, 2014.

[3]. L.Mariani, F.Pastore, M.Pezze, “Dynamic Analysis for

Diagnosing Integration Faults,” IEEE Trans. Softw. Eng.,

vol. 37, no. 4, pp. 486–508, 2011.

[4]. R.P.J.C.Bose and W.M.P. van der Aalst, “Discovering

signature patterns from event logs,” in Proc. IEEE

Symposium on Computational Intelligence and Data Minin,

2013, pp. 111–118.

[5]. D.Cotroneo, R.Pietrantuono, LMariani, F.Pastore,

“Investigation of Failure Causes in Workload-driven

Reliability Testing,” in Proc. Fourth International Workshop

on Software Quality Assurance, 2007, pp. 78–85.

[6]. W.Lee, S.J.Stolfo, P.K.Chan, “Learning Patterns from Unix

Process Execution Traces for Intrusion Detection,” AAAI

Workshop AI Approaches Fraud Detect. Risk Manag., pp.

50–56, 1997.

[7]. A.E.Hassan et al., “An Industrial Case Study of Customizing

Operational Profiles Using Log Compression,” in Proc. 30th

International Conference on Software Engineering, 2008,

pp. 713–723.

[8]. A.Mockus, “Engineering Big Data Solutions,” in Proc. on

Future of Software Engineering, 2014, pp. 85–99.

[9]. T.Reidemeister, M.A.Munawar, M.Jiang, P.A.S.Ward,

“Diagnosis of Recurrent Faults Using Log Files,” in Proc.

Conference of the Center for Advanced Studies on

Collaborative Research, 2009, pp. 12–23.

[10]. R.Brown et al., “STEP: A Framework for the Efficient

Encoding of General Trace Data,” in Proc. ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software

Tools and Engineering, 2002, pp. 27–34.

[11]. A.Hamou-Lhadj and T.C.Lethbridge, “A Metamodel for the

Compact but Lossless Exchange of Execution Traces,” Softw

Syst Model, vol. 11, no. 1, pp. 77–98, 2012.

[12]. A. Kuhn and O. Greevy, “Exploiting the Analogy Between

Traces and Signal Processing,” in Proc. 22Nd IEEE

International Conference on Software Maintenance, 2006,

pp. 320–329.

[13]. A.V. Miranskyy et al., “SIFT: a scalable iterative-unfolding

technique for filtering execution traces,” in Proc. CASCON,

2008, pp. 21:274–21:288.

[14]. “Processor Tracing | Intel® Developer Zone.” Available:

https://software.intel.com/en-us/blogs/2013/09/18/processor-

tracing. [Accessed:07-Aug-2015].

[15]. “Information technology - Architecture-Driven

Modernization (ADM): Knowledge Discovery Meta-Model

(KDM),” Object Management Group.

[16]. G.Lee et al., “The Unified Logging Infrastructure for Data

Analytics at Twitter,” in Proc VLDB Endow,vol. 5, no. 12,

pp. 1771–1780, 2012.

[17]. H.Pirzadeh et al., "Stratified Sampling of Execution Traces:

Execution Phases Serving as Strata," Science of Computer

Programming, 78(8), pp. 1099–1118, 2013.

[18]. A.Oliner, A.Ganapathi, W.Xu, “Advances and Challenges in

Log Analysis, Communications of the ACM, v 55, n 2, p 55-

61, 2012.

[19]. H.Jaygarl, S.Kim, T.Xie, C.K.Chang, “OCAT: Object

Capture based Automated Testing,” in Proc. ISSTA, 2010,

pp. 159–170.

