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Introduction

The HOL-4 system is an implementation of Higher Order Logic.

It provides an environment for proving theorems in a formal logic.

One may interact with HOL-4 in order to build up theories and prove
theorems using existing automated reasoning tools.

HOL-4 also provides provides an environment for building custom
reasoning tools.
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Overview of talk

We will discuss

The HOL logic
Its implementation in HOL-4
Overview of reasoning tools
System aspects

HOL is a big system, so I won’t be able to cover very much.
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Logic: syntax

The HOL Logic is essentially Church’s Simple Type Theory.
It is based on simple types:

ty ::= tyvar | (ty1, . . . , tyn) tyopn

which are used to build lambda-calculus terms:

tm ::= v : ty | c : ty | tm1 tm2 | λv . tm

Type operators and (term) constants are held in the signature, which
can be extended by the definition principles.
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Logic: initial signature

The initial signature has the following primitive type operators:
Booleans (bool)
Functions (ty1 → ty2)
Individuals (ind)

and constants:

Equality =: α → α → bool M = N
Implication ⇒: bool → bool → bool P ⇒ Q
Choice ε : (α → bool) → α εx . P x
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Logic: semantics

HOL has a classical set-theoretic semantics

a type with no type variables in it represents a non-empty set.
a type with n distinct type variables is represented semantically by
a function that takes n n.e. sets to a n.e. set.

In particular a function of type τ1 → τ2 represents a total function from
τ1 to τ2.
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Primitive Rules of Inference

ASSUME
t ` t

REFL
` t = t

BETA_CONV
` (λv . M) t = M[v 7→ t ]

SUBST
Γ1 ` t1 = t ′

1, . . . , Γn ` tn = t ′
n Γ ` M[t1, . . . , tn]

Γ ∪ Γ1 ∪ . . . Γn ` M[t ′
1, . . . , t ′

n]

ABS
Γ ` t1 = t2

Γ ` (λv . t1) = (λv . t2)

INST_TYPE
Γ ` t

θ(Γ) ` θ(t)

MP
Γ ` A ⇒ B ∆ ` A

Γ ∪∆ ` B

DISCH
Γ ` A

Γ− {t} ` t ⇒ A
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Axioms

BOOL_CASES
` ∀t . t ∨ ¬t

ETA
` (λx . M x) = M

SELECT
` ∀P x . P x ⇒ P(εy .P y)

INFINITY
` ∃f : ind → ind. ONE_ONE f ∧ ¬ONTO f

Might be able to get away with three axioms since

SELECT ⇒ BOOL_CASES

INFINITY only used once, to build N.
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Primitive Definition Principles

Allow extending the syntax of the logic in a consistency-preserving
way.

Type definition
Constant specification
Constant definition

Won’t go into details, but are intentionally very simple.

That’s it for the primitive logic. Proved sound wrt its semantics
(Gordon/Pitts).
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Basic Logic

The usual connectives and quantifiers can then be defined.

Truth ` T = ((λx . x) = (λx . x)) T
Universal ` (∀) P = (λx . T) ∀x . P x
Falsity ` F = ∀b. b F
Negation ` (¬) P = (P ⇒ F) ¬P
Existential ` (∃) P = P(εx . P x) ∃x . P x
Conjunction ` (∧) P Q = ∀t . (P ⇒ Q ⇒ t) ⇒ t P ∧Q
Disjunction ` (∨) P Q = ∀t . (P ⇒ t) ⇒ (Q ⇒ t) ⇒ t P ∨Q

Plus a few others.

We can now prove intro/elim rules and go forth to reason boldly!
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Implementation

Implementors:

The bulk of HOL is based on code written by—in
alphabetical order—Hasan Amjad, Bruno Barras, Richard
Boulton, Anthony Fox, Mike Gordon, John Harrison, Peter
Homeier, Joe Hurd, Ken Larsen, Tom Melham, Robin Milner,
Malcolm Newey, Michael Norrish, Larry Paulson, Konrad
Slind, and Don Syme.

Many others have supplied parts of the system, bug fixes, etc.
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History

Late 70’s to early 80’s: LCF and ML
Mid 80’s to 1988: internal Cambridge HOL versions
HOL88
ICL HOL (now Proof Power)
HOL90
HOL98
HOL Light
HOL-4

Multiple implementations; but HOL logic essentially unchanged.
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Kernel

HOL follows in the LCF tradition in having a small kernel
implementation which encapsulates the primitive rules, axioms, and
definition principles of the logic.

Arbitrary programming on top of the kernel is used to build tools.

Set of possible inference rules is the closure of the primitives under ML
programming.

If the kernel is sound then programming on top can not result in
soundness bugs, e.g., derivation of ` F.

Note similarity with micro-kernel idea from OS.
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Two Kernels

LCF/HOL88 : name-carrying terms
HOL90 : deBruijn-like (early example of locally nameless)
HOL98 : explicit substitutions (thanks to Bruno Barras)
HOL4 : two kernels

Why?
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Comparison

Terms implemented as an abstract type, with constructors and
destructors.

mk_abs : term ∗ term → term
dest_abs : term → term ∗ term

In a dB-style implemention mk_abs(v , M) must (eventually) traverse
all of M replacing suitable dB indices by free variable v .

Naively, in order to build an iterated λ-abstraction λv1 . . . vn. M or a
quantifier iteration, n × size(M) work needs to be done. Partially
addressed by explicit substitutions, but not completely.

Upshot: significant slowdown on terms with deeply nested quantifiers.
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Comparison

In contrast, name-carrying terms have constant-time mk_abs and
dest_abs.

BUT matching, α-conversion, computing free vars, etc. are slower.

Question: Is there an optimal implementation of the HOL prelogic?

Our "solution": have two separate kernels. Pick which one you want at
system build time. The use of abstract datatypes has made this almost
completely painless: no duplication of code above the kernel.
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Theories

The system provides a collection of already-developed theories. (All
built up definitionally.)

Basics: booleans, pairs, sums, options, relations
Numbers: N, Z, Q, R, fixed point, floating point, n-bit words.
Sequences: lists, lazy lists, character strings
Collections: predicate sets, multisets
Misc. math: partial orders, monad instances, finite maps,
polynomials, probability, abstract algebra, elliptic curves
Temporal logics: (ω-automata, CTL, µ-calculus, PSL)
Lambda calculus: chapters from Barendregt
Program logics: Hoare logic, separation logic
Machine models: ARM, PPC, and IA32

Represents hundreds of person-years of effort.
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Reasoning Support
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Advanced Definition Principles

These reduce complex definitions into simple ones, and derive (by
proof) the desired formulas.

Datatypes (Melham, Gunter, Harrison)
Inductive relations (Melham, Harrison, Homeier)
Recursive functions (Gordon, Melham, Slind)
Quotients (Homeier)
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Datatypes

Similar to subset of ML datatypes.
Recursive
Mutually Recursive
Nested Recursive
Mutual and Nested
Records

Scales pretty well. Used for defining ASTs for PL in
Owen’s formalization of Ocaml
Norrish’s formalization of C++
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Inductive Relations

Recursive
Mutually Recursive
Infinitary premises

Scales pretty well. Used to define
Evaluation relation for OCaml and C++
Transition relation for TCP
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Recursive Functions

ML-style pattern-matching
Mutual Recursion
Nested Recursion
Higher order recursion
Automatic derivation of custom induction theorem
Naive but useful termination prover

With datatype package, offers a way of doing functional programming
in logic.
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Automated Reasoners

Simplification
Evaluation
First order proof search
Decision procedures
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Simplification

Conditional and contextual rewriter
Higher order matching (Miller/Nipkow style)
Permutative rewriting (normalizing AC terms)
User-extensible with arbitrary reasoners that deliver equality
theorems (conversions and dec. procs)

Uses: interactive proof, prototyping reasoning tools
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Evaluation

Call-by-value by deductive steps
Ground (and symbolic) evaluation using database of logic
functions
Author: Bruno Barras

Uses: custom ground evaluators; symbolic simulation
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First order proof search

METIS
Ordered resolution
Reduction of some higher order stuff to first order (via combinator
translation)
Author: Joe Hurd

Uses: interactive theory development
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Decision procedures

For linear fragment of N, Z, R, W
For CS logics: µ-calculus, fragments of Separation logic, ...
Coq-style partial reflection (for rings)

Uses: interactive proof, automating proof in user-defined domains
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Programming Automated Reasoners

How are these things built?

Use ML as a proof composition language for forward proof
Tactics (subgoal decomposition, Milner)
Conversions (equational reasoning, Paulson)

HOL4 offers APIs supporting such activities.
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Importing results

Importing results from other proof systems
Without proof (via oracle mechanism).

I trusted BDD operations
I interaction with ACL2

Translating given proof object into HOL proof
I minisat interface for tautology checking
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Generating code and TeX

Given a collection of datatypes and function definitions, the HOL
user can generate SML and/or OCaml code
Given an arbitrary theory, a TeX version can be automatically
generated.
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Interactive Proof

Nothing fancy.

A simple goalstack interface for tactic-based interactive proof
Set of emacs macros for building proof script while interacting with
ML top-level
Declarative elements integrated into tactic proof, e.g.

P by tactic

uses tactic to prove P in the current proof context and then adds P
as a new assumption.
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Documentation

HOL-4 provides online and offline documentation, although the
distinction is somewhat blurred (a good thing!)

Offline: HOL Logic, Description, Reference, Tutorial
Online: help system for Moscow ML, HOL API, HOL theorems,
etc.
Online: Webpages for the same

Konrad Slind (University of Utah) An Overview of HOL-4 August 19, 2008 32 / 38



Offline documentation

High quality typeset documentation

Logic: formal description of syntax and semantics of HOL logic,
due to Mike Gordon and Andy Pitts.
Tutorial: range of detailed examples in using HOL
Description: detailed explanation of embedding, theories, libraries,
and reasoning tools. Not read by enough people!
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Platforms

OS:

Windows (auto-installer)
Mac OS X
Linux
other Unixes (AIX, Solaris, etc)

ML:

Moscow ML
Poly/ML (thanks to Scott Owens)
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Interesting Verification Projects

A sampling of projects that use HOL-4:

Network semantics
Semantics of OCaml (Owens, ESOP’08)
Semantics of C++ (Norrish, TTVSI)
Semantics of MP x86 (Sewell, in progress)
Semantics of ARM (Fox)
Compilation of functional programs to hardware (Gordon,Iyoda,
Slind)
Compilation of functional programs to assembly (Li,Myreen,Slind)
Others
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Extending HOL?

The HOL logic has proved to be quite good at modelling much
mathematics and CS.
But occasionally its type system is not strong enough to capture
common and useful notions.

Monads
Formal languages

We have resisted making ad-hoc extensions, since there are a
bewildering variety of choices.
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HOL extensions

Recently, some nice extensions of HOL have been proposed:

Norbert Völcker’s HOL2P system adds type operator variables
and universal types. Implementation by revising HOL-Light in a
backwards compatible way.
Peter Homeier has been working on an extension of the HOL
logic, called HOL− ω. This is being implemented by revising
HOL-4, also in a backwards compatible way.
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Webpage

http://hol.sourceforge.net
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