
Introduction Programming Logic Prog.2 Corec. refl.

A Coq tutorial for confirmed Proof system users

Yves Bertot

August 2008

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Presentation

I Get it at http://coq.inria.fr

I pre-compiled binaries for Linux, Windows, Mac OS,

I commands: coqtop or coqide (user interface),

I Also user interface based on Proof General,

I Historical overview and developers: refer to the introduction
of the reference manual.

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Libraries and Uses

I Numbers (nat, Z, rationals, real) , Strings, Lists, Finite Sets
and maps,

I User contributions
I Constructive mathematics (R. U., Nijmegen),
I Electronic banking protocols (Trusted Logic, Gemalto),
I Programming languages semantics and tools (Compcert,

Möbius, Princeton, U. Penn, U. C. Berkeley),
I Large prime number certification, elliptic curves,
I Geometry: elements, algorithms,

I A book with many examples and exercises: the Coq’Art
(Springer, 2004),
http://www.labri.fr/Perso/~casteran/CoqArt

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

A programming language

I Typed lambda calculus with inductive and co-inductive
data-types,

I Pattern-matching,

I Dependent types,

I No side-effect, no exception: pure functional programming,

I Recursion safeguard: structural recursion,

I Special notations for numbers and lists.

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

A few inductive types

I Inductive nat : Set := O | S (n:nat).

I Inductive bool : Set : true | false.

I Obtained when typing Require Import ZArith:
Inductive positive : Set :=
xI (p:positive) | xO (p:positive) | xH.

I Inductive Z : Set :=
Z0 | Zpos (p:positive) | Zneg (p:positive).

I Obtained when typing Require Import List:
Inductive list (A:Type) : Type :=
nil | cons (a:A)(l:list A).

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Recursive definitions and pattern-matching

I The Fixpoint command,
Fixpoint app (A:Type) (l1 l2:list A) : list A :=
match l1 with

nil => l2
| cons a l1’ => cons a (app l1’ l2)
end.

I reminiscent of Ocaml’s pattern-matching (using => to
separate sides of rules),

I Recursive calls only on variables out of pattern-matching,
I for one argument that can be guessed by Coq,

I Structural recursion,

I More forms of recursion, to be studied later.

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Example recursive function

I The following function computes whether the input is even

I Patterns need not be simple,

I They need to be linear (or will be read as such),

Fixpoint e_b (x:nat) : bool :=
match x with
S (S x) => e_b x

| O => true
| _ => false
end.

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Dependent types

I A distinguishing feature.

I Functions may return results in different types,

I The result type is chosen from the input (with a function,
too),

Definition T (b:bool) : Type := if b then nat else bool.

Definition f (b:bool) : T b :=
if b return T b then O else true.

I New notation for types: f : forall b:bool, T b

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Dependency in inductive types

I Several extensions:
I Add dependency only in constructors: dependent records,
I Define families of types,
I Mix the two aspects.

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Dependent records

Inductive bt : Type := Cbt b (v:T b).

I The following returns the second component of a bt pair, or
its even value when this second component is a number.

Definition g(c:bt) : bool :=
let (b, v) := c in
(if b return T b -> bool
then fun v:nat => e_b v
else fun v:bool => v) v.

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Inductive families

I An inductive definition may not construct one type but a
family of types,

I Examples : list : Type -> Type,
vector : Type -> nat -> Type

Inductive list (A:Type) : Type :=
nil | cons (a:A) (l:list A).

Inductive vector (A:Type) : nat -> Type :=
Vnil : vector A 0

| Vcons : forall n, A -> Vector A n -> Vector A (S n).

I Beware: even simple functions on type vector are a challenge
to write.

I Better representation of vectors described later.

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Explicit polymorphism and implicit parameters

I In usual functional programming languages, polymorphism is
implicit,

I type variables are universally quantified by default,

I Here polymorphism is explicit:
cons : forall A:Type, A -> list A -> list A

I The first argument of cons is declared implicit.

I Should not be written by the user, but guessed at
type-verification time,

I The same for nil, but type information guessed from the
context,

I Implicit argument mechanism is overriden by writing @cons,
@nil,

I Notations: a::tl is cons a tl, also @cons a tl.

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Logic and proofs

I Programming and constructing proofs are the same activity in
Coq,

I The programming language is used directly to represent
logical statements,

I Some types are reserved for logical reasoning,

I Because of explicit typing, terms contain redundant
information,

I A tactic language is provided to avoid constructing terms by
hand.

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

The Curry-Howard isomorphism

I Read arrows as implications,

I Read dependent types as universal quantifications,

I Read types as logical formula,

I Read “t has type T” as “t is a proof of T”,

I Read some inductive types families as logical connectives,

I Functions are total, type A -> B can be read as “if you have
a proof of A, you can construct a proof of B”,

I Reserve a collection of types (a sort) for logical propositions
Prop.

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Logical connectives

Inductive and (A B:Prop) : Prop :=
conj : A -> B -> and A B.

Definition proj1 (A B:Prop) (c: and A B) : A :=
match c with conj p1 _ => p1 end.

I Notation : A /\ B for and A B,

I The same for \/ (disjunction), False, ~ (negation),

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Inductive representation of order

Inductive le (n:nat) : nat -> Prop :=
le_n : le n n

| le_S : forall m, le n m -> le n (S m).

Fixpoint le_ind (n:nat)(P:nat->Prop)
(Hn : P n)(HS : forall m, le n m -> P m -> P (S m))
(p : nat)(np : le n p) : P p :=
match np in le _ x return P x with
le_n => Hn

| le_S m nm => HS m nm (le_ind n P Hn HS m nm)
end.

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Inductive representation of order

Inductive le (n:nat) : nat -> Prop :=
le_n : le n n

| le_S : forall m, le n m -> le n (S m).

Fixpoint le_ind (n:nat)(P:nat->Prop)
(Hn : P n)(HS : forall m, le n m -> P m -> P (S m))
(m:nat)(h:le n m) : P n :=
match h in le _ x return P x with
le_n => Hn : P n

| le_S m nm => HS m nm (le_ind n Hn Hs m) : P (S m)
end.

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Inductive representation of equality

Inductive eq (A:Type)(x:A) : A -> Prop :=
refl_equal : eq A x x.

Notation "x = y" := eq _ x y.

Definition eq_ind :
forall (A:Type)(P:A->Prop)(x:A), P x ->
forall y, x = y -> P y :=

fun A P x px y q =>
match q in @eq _ _ y return P y with

refl_equal => px : P x
end : P y.

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Slides from here to section on co-recursion were not presented at
the conference.

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Classical and constructive logic

I Interpretation of arrows and universal quantification does not
give provability for all formulas provable with truth tables,

I Example: Peirce’s law ((A -> B) -> A) -> A,

I Inductive connectives in their current form do not extend the
logic,

I This logic is constructive,

I Advantage: constructive proofs contain algorithms,

I No logical inconsistency in using classical logic (by admitting
excluded middle, ∀ P, P \/ ¬ P, as in other systems),

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Classical logic

I Separation of Prop and Type allows for this,

I The barrier is “weak elimination”: no case analysis on Prop
inductive types to obtain Type values,

I exists x, P x means there is an x satisfying P
{x | P x} means a pair of an x and a certificate that it
satisfies P,

I In a constructive setting, the latter is existential quantification,

I Even in presence of excluded middle (for Prop types), values
of the form {x | P x} can always be computed,

I Some other classical axioms may remove this property (axiom
of definite description, axiom of choice).

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Proofs: the Coq toplevel

I Basic categories of commands:
I Definitions: Definition, Fixpoint, Inductive,
I Queries: Search, Check, Locate,
I Goal handling: Theorem, Goal, Lemma, Qed
I Tactics (possibly preceded by a goal number), elim, intro,

apply,

I Advanced features:
I Notations and scopes,
I General recursion,
I Module system,
I “Program” presentation of terms,
I Canonical structures and type classes.

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

An example of proof

Lemma ex1 : forall a b:Prop, a /\ b -> b /\ a.
1 subgoal

============================
forall a b : Prop, a /\ b -> b /\ a

ex1 < intros a b c.
1 subgoal

a : Prop
b : Prop
c : a /\ b
============================
b /\ a

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

An example of proof (continued)

...
c : a /\ b
============================
b /\ a

case c.
...
============================
a -> b -> b /\ a

intros ha hb.
...
ha : a
hb : b
============================
b /\ a

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

An example of proof (continued)

...
============================
b /\ a

split.
2 subgoals

...
hb : b
============================
b

subgoal 2 is:
a

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

An example of proof (continued)

exact hb.
...
ha : a
...
============================
a

assumption.
Proof completed.
Qed.
intros a b c.
case c.
...
ex1 is defined

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

About tactics

I The tactic apply performs backward chaining with a
theorem’s goal,

I the tactic elim looks systematically for a theorem shaped like
an induction principle,

I The tactic intro can destructure inductive types,

I The tactics change, simpl replace the goal with a convertible
one,

I The tactic rewrite uses equalities (hides a case analysis,

I Automatic tactics are provided for decidable fragments:
intuition, firstorder, ring, field, omega.

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Programs as proofs

I Use tactics to develop algorithms,

I apply calls a function,

I case describes case analysis (with dependencies),

I elim describes a recursive computation,

I More complex tactics should be avoided.

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Mixing algorithmic and logical content

I Inductive types can contain both data and proofs,

I Function can take as argument both data and proofs,

I Allow for partial functions,

I More expressive types,

I Examples follow.

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Constructive disjunction

Inductive sumbool (A B:Prop) : Set :=
left (h:A) | right (h:B).

Notation { A } + { B } := sumbool A B.

I Functions returning a sumbool type are like boolean functions,

I sumbool types can be used in proofs like disjunctions,

I Pattern matching on sumbool values increases the context.

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Learning from experience

I Comparing pattern-matching constructs:

match vb with true => e1 | false => e2 end

match vsb with left h => e’1 | right h’ => e’2 end

I e1 and e2 live in the same context,

I e’1 and e’2 are distinguished by the knowledge h and h’,
I Extra knowledge used to

I add knowledge to results,
I justify calls to partial functions,
I or discard unreachable cases.

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

certified values

I Sigma types: a generalization of constructive disjunction,

I Combine an index and a element of a family at this index,

I Usable like an existential statement,

I Like the earlier bt, but with a proof as second component.

Inductive sig (A:Type)(P:A->Prop) : Type :=
exist (x:A)(H:P x).

Notation "{ x : A | P x } " := sig A (fun x => P x).

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Better representation of vectors

I make sure that the length information can be forgotten easily,

Definition vector (A:Type)(n:nat) :=
{l:list A | length l = n}.

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Example: insertion sort

Variables (A : Type)(le : A -> A -> Prop).
Infix "<=" := le.
Variable le_dec : forall x y, {x <= y}+{y <= x}.

Inductive sorted : list A -> Prop :=
s0 : sorted nil

| s1 : forall x, sorted (x::nil)
| s2 : forall x y l, x <= y -> sorted (y::l) ->

sorted (x::y::nil).

Hint Resolve s0 s1 s2.

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

The sort function

Check insert.
: A -> forall l:list A, sorted l -> {l’ | sorted l’}.

Fixpoint sort (l:list A) : {l’ | sorted l’} :=
match l with

nil => exist _ nil s0
| a::tl => let (l’, p) := sort tl in insert a l’ p
end.

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

The insert function

Definition insert : A -> list A -> {l’ | sorted l’}.
intros x l sl; assert
(S : {l’ | sorted l’ /\

forall b, sorted (b::l) -> b <= x -> sorted (b::l’)}).
induction l.

sl : sorted nil
======================
{l’ | sorted l’ /\ ...}

exists (x::nil); auto.

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

insert (continued)

sl : sorted (a :: l)
IHl : sorted l -> {l’ : list A | sorted l’ /\ ... }
==============================
{l’ : list A | sorted l’ /\ ... }

case (le_dec x a); intros cmp.

exists (x::a::l).
cmp : x <= a
==============================
sorted (x :: a :: l) /\
(forall b : A, sorted (b :: a :: l) -> b <= x ->

sorted (b :: x :: a :: l))
auto.

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

insert (continued)

sl : sorted (a :: l)
IHl : sorted l -> {l’ | sorted l’ /\ forall b, ...}
cmp : a <= x
===========================
{l’ | sorted l’ /\ ...}

assert (sl1 : sorted l) by (inversion sl; auto).
destruct (IHl sl) as [l’ [_ sl’]].

sl’ : forall b, sorted (b :: l) -> b <= x ->
sorted (b :: l’).

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

insert (continued)

exists (a::l’).
split; try (intros b s’; inversion s’); firstorder.

(* unloading the recursion. *)
S : {l’ : list A |

sorted l’ /\ (forall b, sorted (b::l) -> ...)
============================
{l’ : list A | sorted l’}

destruct S as [l’ [sl’ _]]; exists l’; exact sl’.
Proof completed.
Defined.

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

insert and sort: testing

Require Import Arith Omega.

Definition le_dec : forall x y : nat, {x <= y}+{y <= x}.
...
Defined.

Eval vm_compute in
let (l, _) := sort _ _ le_dec (1::7::3::2::nil).

= 1 :: 2 :: 3 :: 7 :: nil
: list nat

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Algorithmic content

Extraction insert.
(** val insert : (’a1 -> ’a1 -> sumbool) ->

’a1 -> ’a1 list -> ’a1 list **)

let rec insert le_dec x = function
| Nil -> Cons (x, Nil)
| Cons (a, l0) ->

(match le_dec x a with
| Left -> Cons (x, (Cons (a, l0)))
| Right -> Cons (a, (insert le_dec x l0)))

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

General recursion

I The foundation : well-founded induction,

I Directly describable as structural recursion over accessibility,
viewed as an inductive proposition,

I Allow recursive calls only on predecessors for a well-founded
relation,

I Discipline enforced by typing,

I Promotes types as strong specifications.

Fix : forall (A : Type) (R : A -> A -> Prop),
well_founded R ->
forall P : A -> Type,
(forall x : A, (forall y : A, R y x -> P y) -> P x) ->
forall x : A, P x

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

The Function command

I Add support for various forms of terminating recursion,

I Uniform syntax for structural, well-founded, or measure-based
termination criteria,

I Induction principle (somehow: induction on the computation
tree),

I Avoids dependent types in definitions (write ML-like code),

I Less complete than the basic well-founded induction.

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Example with Function

Function sum (x:Z) {measure Zabs_nat} : Z :=
if Z_le_dec x 0 then 0 else x + sum (x-1).

1 subgoal

============================
forall (x : Z) (anonymous : ~ x <= 0),
Z_le_dec x 0 = right (x <= 0) anonymous ->
(Zabs_nat (x - 1) < Zabs_nat x)%nat

intros x xneg _; apply Zabs_nat_lt; omega.
Defined.

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Function example

Lemma sum_p : forall x, 0 <= x -> 2*sum x = x*(x+1).
2 subgoals

...
_x : x <= 0
============================
0 <= x -> 2 * 0 = x * (x + 1)

intros; assert (x = 0) by omega; subst x; auto.
...

_x : ~ x <= 0
IHz : 0 <= x - 1 ->

2 * sum (x - 1) = (x - 1) * (x - 1 + 1)
============================
0 <= x -> 2 * (x + sum (x - 1)) = x * (x + 1)

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Function example

...
_x : ~ x <= 0
IHz : 0 <= x - 1 ->

2 * sum (x - 1) = (x - 1) * (x - 1 + 1)
============================
0 <= x -> 2 * (x + sum (x - 1)) = x * (x + 1)

intros;
replace (2*(x+sum(x-1))) with (2*x + 2*sum(x-1)) by ring;
rewrite IHz;[ring | omega].

Proof completed.
Qed.

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Next four slides were presented at the conference.

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Co-induction

I A different form of recursion,

I Data is not necessarily finite,

I Recursion is allowed only if data is being produced,

I Computation is lazy.

CoInductive Stream (A:Type) : Type :=
Scons (a:A)(s:Stream A).

Implicit Arguments Scons [A].
Infix "::" := Scons (at level 60, right associativity).

CoFixpoint zeros : Stream nat := 0::zeros.

CoFixpoint nums (n:nat) : Stream nat := n::nums (n+1).

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Lazy computation

Fixpoint explore (A:Type)(s:Stream A)(n:nat): A :=
match s, n with

a::_, 0 => a
| _::t, S p => explore _ t p
end.

Implicit Arguments explore [A].

Definition nats := nums 0.
Time Eval vm_compute in explore nats 10000.

= 10000 : nat
Finished transaction in 10. secs (...)
Time Eval vm_compute in explore nats 10000.

= 10000 : nat
Finished transaction in 0. secs (...)

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Erastothene’s Sieve in 50 lines

(* Definitions of Stream, nums, take divides : 22 lines *)

Fixpoint bfilter (p:nat->bool)(n:nat)(s:Stream nat)
{struct n} : nat*Stream nat :=
match n with

0 => let (a, tl) := s in (a, tl)
| S k =>
let (a, tl) := s in
if p a then (a,tl) else bfilter p k tl
end.

CoFixpoint filter (p:nat->bool)(k:nat)(s:Stream nat)
: Stream nat :=

let (a,tl) := bfilter p k s in a::filter p a tl.

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Eratosthene’s sieve, continued

CoFixpoint sieve (s:Stream nat) : Stream nat :=
let (a,tl) := s in
a::sieve (filter (not_divides a) a tl).

Definition primes := sieve (nums 2).

Eval vm_compute in take 20 primes.
= 2 :: 3 :: 5 :: 7 :: 11 :: 13 :: 17 :: 19 :: 23

:: 29 :: 31 :: 37 :: 41 :: 43 :: 47 :: 53 :: 59
:: 61 :: 67 :: 71 :: nil

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Slides beyond this one were not presented at the conference.

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Co-Inductive predicates

I Predicates with “infinite proofs”,
I Same well-formedness criterion as co-recursive data,

I Proofs actually not more infinite than proofs by induction,

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Example of co-inductive predicates

CoInductive prime_spec : Stream nat -> Prop :=
cp1 : forall a tl, prime a -> prime_spec tl ->

prime_spec (a::tl).

CoInductive all_prime_spec (p:nat) : Stream nat -> Prop :=
cp2 : forall a tl, p < a -> prime a ->

(forall x, p < x < a -> ~prime a) ->
all_prime_spec a tl ->
all_prime_spec p (a::tl).

CoInductive bisimilar (A:Type) :
Stream A -> Stream A -> Prop :=
cb : forall a tl1 tl2, bisimilar tl1 tl2 ->

bisimilar (a::tl1) (a::tl2).

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Reflexion

I Define a function that computes inside the theorem prover,

I Establish a theorem the results of the function,

I Use the theorem to prove results,

I Approach used inside Coq for ring equalities,

I Our example : associativity.

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Re-organizing binary trees

Require Import Arith.
Set Implicit Arguments.

Section fl.

Variables (A : Type) (op : A -> A -> A).
Hypothesis assoc : forall x y z, op x (op y z) = op (op x y) z.

Inductive bin : Type := L (v:A) | N (x y : bin).

Function fl1 (x y : bin) struct x : bin :=
match x with

L v => N (L v) y
| N t1 t2 => fl1 t1 (fl1 t2 y)
end.

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Re-organizing binary trees

Function fl (x : bin) struct x : bin :=
match x with L v => L v | N t1 t2 => fl1 t1 (fl t2) end.

Function it (t:bin) struct t : A :=
match t with
L v => v | N t1 t2 => op (it t1) (it t2)

end.

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Re-organizing binary trees (proofs)

Lemma fl1_s : forall t1 t2,
it (fl1 t1 t2) = op (it t1) (it t2).

intros t1 t2; functional induction (fl1 t1 t2).
================
it (N (L v) y) = op (it (L v)) (it y)

auto.
IHb : it (fl1 t2 y) = op (it t2) (it y)
IHb0 : it (fl1 t1 (fl1 t2 y)) =

op (it t1) (it (fl1 t2 y))
================
it (fl1 t1 (fl1 t2 y)) = op (it (N t1 t2)) (it y)

simpl; rewrite IHb0, IHb.
auto.
Qed.

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Re-organizing binary trees (proofs)

Lemma fl_s : forall t, it (fl t) = it t.
intros t; functional induction (fl t); auto.
rewrite fl1_s, IHb; simpl; auto.
Qed.

Lemma fl2 : forall t1 t2, it (fl t1) = it (fl t2) ->
it t1 = it t2.

intros t1 t2; repeat rewrite fl_s; auto.
Qed.

End fl.

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Transforming problem into data

Ltac mkt f v :=
match v with
| (f ?X1 ?X2) =>

let r1 := mkt f X1 with r2 := mkt f X2 in
constr:(N r1 r2)

| ?X => constr:(L X)
end.

Ltac abstract_plus := intros;
match goal with
|- ?X1 = ?X2 =>

let r1 := mkt plus X1 with r2 := mkt plus X2 in
change (it plus r1 = it plus r2)

end.

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Example on a goal

Lemma ex1 : forall x y, 1 + x + 3 + y = (1 + x) + (3 + y).
abstract_plus.

============================
it plus (N (N (N (L 1) (L x)) (L 3)) (L y)) =
it plus (N (N (L 1) (L x)) (N (L 3) (L y)))

apply fl2 with (1 := plus_assoc).
============================
it plus (fl (N (N (N (L 1) (L x)) (L 3)) (L y))) =
it plus (fl (N (N (L 1) (L x)) (N (L 3) (L y))))

simpl fl.
============================
it plus (N (L 1) (N (L x) (N (L 3) (L y)))) =
it plus (N (L 1) (N (L x) (N (L 3) (L y))))

reflexivity.
Qed.

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction Programming Logic Prog.2 Corec. refl.

Topics not covered

I Subtyping: simulated with the help of coercions,

I Polymorphism: simulated with implicit arguments,

I Modularity,

I Defined equality: the Setoid approach,

I Type classes and canonical structures,

I small-scale reflection.

Yves Bertot A Coq tutorial for confirmed Proof system users

	Introduction
	Programming
	Logic
	Prog.2
	Corec.
	refl.

