A Coq tutorial for confirmed Proof system users

Yves Bertot

August 2008

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction

Presentation

Get it at http://coq.inria.fr
pre-compiled binaries for Linux, Windows, Mac OS,
commands: coqtop or cogide (user interface),

Also user interface based on Proof General,

vV v v v Yy

Historical overview and developers: refer to the introduction
of the reference manual.

Yves Bertot A Coq tutorial for confirmed Proof system users

Introduction

Libraries and Uses

» Numbers (nat, Z, rationals, real) , Strings, Lists, Finite Sets
and maps,

» User contributions

>

>

>

>

>

Constructive mathematics (R. U., Nijmegen),

Electronic banking protocols (Trusted Logic, Gemalto),
Programming languages semantics and tools (Compcert,
Mébius, Princeton, U. Penn, U. C. Berkeley),

Large prime number certification, elliptic curves,
Geometry: elements, algorithms,

» A book with many examples and exercises: the Coq'Art
(Springer, 2004),
http://www.labri.fr/Perso/ casteran/CogArt

Yves Bertot A Coq tutorial for confirmed Proof system users

Programming

A programming language

» Typed lambda calculus with inductive and co-inductive
data-types,

» Pattern-matching,

» Dependent types,

» No side-effect, no exception: pure functional programming,

» Recursion safeguard: structural recursion,

» Special notations for numbers and lists.

Yves Bertot A Coq tutorial for confirmed Proof system users

Programming

A few inductive types

» Inductive nat : Set := 0 | S (n:nat).
» Inductive bool : Set : true | false.

» Obtained when typing Require Import ZArith:
Inductive positive : Set :=
xI (p:positive) | x0 (p:positive) | xH.
» Inductive Z : Set :=
Z0 | Zpos (p:positive) | Zneg (p:positive).
» Obtained when typing Require Import List:
Inductive list (A:Type) : Type :=
nil | cons (a:A)(l:1list A).

Yves Bertot A Coq tutorial for confirmed Proof system users

Programming

Recursive definitions and pattern-matching

» The Fixpoint command,
Fixpoint app (A:Type) (11 12:1ist A) : list A :=
match 11 with
nil => 12
| cons a 11’ => cons a (app 11’ 12)
end.

» reminiscent of Ocaml’s pattern-matching (using => to
separate sides of rules),

» Recursive calls only on variables out of pattern-matching,
» for one argument that can be guessed by Coq,

» Structural recursion,

» More forms of recursion, to be studied later.

Yves Bertot A Coq tutorial for confirmed Proof system users

Programming

Example recursive function

» The following function computes whether the input is even
» Patterns need not be simple,

» They need to be linear (or will be read as such),

Fixpoint e_b (x:nat) : bool :=
match x with
S (8 x) =>e_bx
| 0 => true
=> false

Yves Bertot A Coq tutorial for confirmed Proof system users

Programming

Dependent types

» A distinguishing feature.
» Functions may return results in different types,

» The result type is chosen from the input (with a function,
too),

Definition T (b:bool) : Type := if b then nat else bool.

Definition f (b:bool) : T b :=
if b return T b then 0 else true.

» New notation for types: £ : forall b:bool, T b

Yves Bertot A Coq tutorial for confirmed Proof system users

Programming

Dependency in inductive types

» Several extensions:

» Add dependency only in constructors: dependent records,
» Define families of types,
» Mix the two aspects.

Yves Bertot A Coq tutorial for confirmed Proof system users

Programming

Dependent records

Inductive bt : Type := Cbt b (v:T Db).

» The following returns the second component of a bt pair, or
its even value when this second component is a number.

Definition g(c:bt) : bool :=
let (b, v) := c in
(if b return T b -> bool
then fun v:nat => e_b v
else fun v:bool => v) v.

Yves Bertot A Coq tutorial for confirmed Proof system users

Programming

Inductive families

» An inductive definition may not construct one type but a
family of types,

» Examples : list : Type -> Type,
vector : Type -> nat -> Type

Inductive list (A:Type) : Type :=
nil | cons (a:A) (1:1list A).

Inductive vector (A:Type) : nat -> Type :=
Vnil : vector A O
| Vcons : forall n, A -> Vector A n -> Vector A (S n).

» Beware: even simple functions on type vector are a challenge
to write.

» Better representation of vectors described later.

Yves Bertot A Coq tutorial for confirmed Proof system users

Programming

Explicit polymorphism and implicit parameters

» In usual functional programming languages, polymorphism is
implicit,

» type variables are universally quantified by default,

» Here polymorphism is explicit:
cons : forall A:Type, A -> list A -> list A

» The first argument of cons is declared implicit.

» Should not be written by the user, but guessed at
type-verification time,

» The same for nil, but type information guessed from the
context,

» Implicit argument mechanism is overriden by writing @cons,
Onil,

» Notations: a::tl is cons a tl, also @cons _ a tl.

Yves Bertot A Coq tutorial for confirmed Proof system users

Logic

Logic and proofs

» Programming and constructing proofs are the same activity in
Coq,

» The programming language is used directly to represent
logical statements,

» Some types are reserved for logical reasoning,

» Because of explicit typing, terms contain redundant
information,

» A tactic language is provided to avoid constructing terms by
hand.

Yves Bertot A Coq tutorial for confirmed Proof system users

Logic

The Curry-Howard isomorphism

>
>
>
>
>
>

Read arrows as implications,

Read dependent types as universal quantifications,

Read types as logical formula,

Read “t has type T" as “t is a proof of T",

Read some inductive types families as logical connectives,

Functions are total, type A -> B can be read as "“if you have
a proof of A, you can construct a proof of B”,

> Reserve a collection of types (a sort) for logical propositions
Prop.

Yves Bertot A Coq tutorial for confirmed Proof system users

Logic

Logical connectives

Inductive and (A B:Prop) : Prop :=
conj : A -> B -> and A B.

Definition projl (A B:Prop) (c: and A B) : A :=
match ¢ with conj pl _ => pl end.

» Notation: A /\ Bforand A B,

» The same for \/ (disjunction), False, ~ (negation),

Yves Bertot A Coq tutorial for confirmed Proof system users

Logic

Inductive representation of order

Inductive le (n:nat) : nat -> Prop :=
le_n : lenn
| le_.S : forall m, lenm -> len (S m.

Fixpoint le_ind (n:nat) (P:nat->Prop)
(Hn : Pn)(HS : forallm, lenm ->Pm->P (S m)
(p : nat)(np : lenp) : Pp :=
match np in le _ x return P x with
le_n => Hn
| le.S m nm => HS m nm (le_ind n P Hn HS m nm)
end.

Yves Bertot A Coq tutorial for confirmed Proof system users

Logic

Inductive representation of order

Inductive le (n:nat) : nat -> Prop :=
le_n : lenn
| le_.S : forall m, lenm -> len (S m.

Fixpoint le_ind (n:nat) (P:nat->Prop)
(Hn : Pn)(HS : forallm, lenm ->Pm->P (S m)
(m:nat)(h:lenm) : Pn :=
match h in le _ x return P x with
le.n=>Hn : Pn
| le.Sm nm => HS m nm (le_ind n Hn Hs m) : P (S m)
end.

Yves Bertot A Coq tutorial for confirmed Proof system users

Logic

Inductive representation of equality

Inductive eq (A:Type)(x:A) : A -> Prop :=
refl_equal : eq A x x.

Notation "x = y" :=eq _ x y.

Definition eq_ind :
forall (A:Type) (P:A->Prop) (x:4), P x ->
forall y, x =y ->P y :=

fun APxpxyq=>

match q in @eq _ _ y return P y with
refl_equal => px : P x
end : P y.

Yves Bertot A Coq tutorial for confirmed Proof system users

Slides from here to section on co-recursion were not presented at
the conference.

Yves Bertot A Coq tutorial for confirmed Proof system users

Logic

Classical and constructive logic

» Interpretation of arrows and universal quantification does not
give provability for all formulas provable with truth tables,

» Example: Peirce’s law ((A -> B) -> A) —> A,

» Inductive connectives in their current form do not extend the
logic,

» This logic is constructive,

» Advantage: constructive proofs contain algorithms,

» No logical inconsistency in using classical logic (by admitting
excluded middle, ¥ P, P \/ — P, as in other systems),

Yves Bertot A Coq tutorial for confirmed Proof system users

Classical logic

» Separation of Prop and Type allows for this,

» The barrier is “weak elimination”: no case analysis on Prop
inductive types to obtain Type values,

> exists x, P x means there is an x satisfying P
{x | P x} means a pair of an x and a certificate that it
satisfies P,

» In a constructive setting, the latter is existential quantification,

» Even in presence of excluded middle (for Prop types), values
of the form {x | P x} can always be computed,

» Some other classical axioms may remove this property (axiom
of definite description, axiom of choice).

Yves Bertot A Coq tutorial for confirmed Proof system users

Logic

Proofs: the Coq toplevel

» Basic categories of commands:
> Definitions: Definition, Fixpoint, Inductive,
» Queries: Search, Check, Locate,
» Goal handling: Theorem, Goal, Lemma, Qed
» Tactics (possibly preceded by a goal number), elim, intro,
apply,
» Advanced features:
» Notations and scopes,
General recursion,
Module system,
“Program” presentation of terms,
Canonical structures and type classes.

vV vy vVvYy

Yves Bertot A Coq tutorial for confirmed Proof system users

Logic

An example of proof

Lemma exl : forall a b:Prop, a /\ b -> b /\ a.
1 subgoal

forall a b : Prop, a /\ b => b /\ a

exl < intros a b c.
1 subgoal

a : Prop
b : Prop
c:a/\b

b /\ a
Yves Bertot A Coq tutorial for confirmed Proof system users

Logic

An example of proof (continued)

c:a/\b

b /\ a

case C.

a->b->b /\ a
intros ha hb.

ha : a
hb : b
b /\ a

Yves Bertot A Coq tutorial for confirmed Proof system users

Logic

An example of proof (continued)

b /\ a
split.
2 subgoals
hb : b

b

subgoal 2 is:
a

Yves Bertot A Coq tutorial for confirmed Proof system users

Logic

An example of proof (continued)

exact hb.

ha : a

a
assumption.
Proof completed.
Qed.

intros a b c.
case c.

exl is defined

Yves Bertot A Coq tutorial for confirmed Proof system users

About tactics

» The tactic apply performs backward chaining with a
theorem's goal,

» the tactic elim looks systematically for a theorem shaped like
an induction principle,
» The tactic intro can destructure inductive types,

» The tactics change, simpl replace the goal with a convertible
one,

» The tactic rewrite uses equalities (hides a case analysis,

» Automatic tactics are provided for decidable fragments:
intuition, firstorder, ring, field, omega.

Yves Bertot A Coq tutorial for confirmed Proof system users

Prog.2

Programs as proofs
>
>
| 4
>
>

Yves Bertot A Coq tutorial for confirmed Proof system users

Use tactics to develop algorithms,

apply calls a function,

case describes case analysis (with dependencies),
elim describes a recursive computation,

More complex tactics should be avoided.

Prog.2

Mixing algorithmic and logical content
>
>
| 4
>
>

Yves Bertot A Coq tutorial for confirmed Proof system users

Inductive types can contain both data and proofs,
Function can take as argument both data and proofs,
Allow for partial functions,

More expressive types,

Examples follow.

Prog.2

Constructive disjunction

Inductive sumbool (A B:Prop) : Set :=
left (h:A) | right (h:B).

Notation { A } + { B } := sumbool A B.

» Functions returning a sumbool type are like boolean functions,
» sumbool types can be used in proofs like disjunctions,

» Pattern matching on sumbool values increases the context.

Yves Bertot A Coq tutorial for confirmed Proof system users

Prog.2

Learning from experience

» Comparing pattern-matching constructs:

match vb with true => e; | false => e, end

match vsb with left h => e’; | right h’ => e’, end
» e; and e» live in the same context,
» e’1 and e’ are distinguished by the knowledge h and h’,

» Extra knowledge used to

» add knowledge to results,
> justify calls to partial functions,
» or discard unreachable cases.

Yves Bertot A Coq tutorial for confirmed Proof system users

certified values

» Sigma types: a generalization of constructive disjunction,
» Combine an index and a element of a family at this index,
» Usable like an existential statement,

» Like the earlier bt, but with a proof as second component.

Inductive sig (A:Type) (P:A->Prop) : Type :=
exist (x:A) (H:P x).

Notation "{ x : A | P x } " := sig A (fun x => P x).

Yves Bertot A Coq tutorial for confirmed Proof system users

Prog.2

Better representation of vectors

» make sure that the length information can be forgotten easily,

Definition vector (A:Type)(n:nat) :=
{1:1ist A | length 1 = n}.

Yves Bertot A Coq tutorial for confirmed Proof system users

Prog.2

Example: insertion sort

Variables (A : Type)(le : A -> A -> Prop).
Infix "<=" := le.

Variable le_dec : forall x y, {x <= y}+{y <= x}.

Inductive sorted : list A -> Prop :=
sO : sorted nil
| s1 : forall x, sorted (x::nil)

| s2 : forall x y 1, x <= y -> sorted (y::1) ->
sorted (x::y::nil).

Hint Resolve sO sl s2.

Yves Bertot A Coq tutorial for confirmed Proof system users

The sort function

Check insert.
: A -> forall 1:1list A, sorted 1 -> {1’ | sorted 1°}.

Fixpoint sort (1l:list A) : {1’ | sorted 1’} :=
match 1 with
nil => exist _ nil sO
| a::t1 => let (1’, p) := sort tl in insert a 1’ p
end.

Yves Bertot A Coq tutorial for confirmed Proof system users

Prog.2

The insert function

Definition insert : A -> list A -> {1’ | sorted 1’}.
intros x 1 sl; assert
(8 : {1’ | sorted 1’ /\
forall b, sorted (b::1) -> b <= x -> sorted (b::1°)}).
induction 1.
sl : sorted nil

{1’ | sorted 1’ /\ ...}
exists (x::nil); auto.

Yves Bertot A Coq tutorial for confirmed Proof system users

Prog.2

insert (continued)

sl : sorted (a :: 1)
IH1 : sorted 1 -> {1’ : list A | sorted 1’ /\ ... }

{1> : 1list A | sorted 1’ /\ ... }
case (le_dec x a); intros cmp.

exists (x::a::1).
cmp X <= a

sorted (x :: a :: 1) /\
(forall b : A, sorted (b :: a :: 1) -> b <= x ->
sorted (b :: x :: a :: 1))
auto.

Yves Bertot A Coq tutorial for confirmed Proof system users

Prog.2

insert (continued)

sl : sorted (a :: 1)
IH1 : sorted 1 -> {1’ | sorted 1’ /\ forall b, ...}
cmp : a <= Xx

{1’ | sorted 1’ /\ ...}
assert (sll : sorted 1) by (inversion sl; auto).
destruct (IH1 sl) as [1’ [_ s1’]].
sl’ : forall b, sorted (b :: 1) -> b <= x —>
sorted (b :: 1°).

Yves Bertot A Coq tutorial for confirmed Proof system users

Prog.2

insert (continued)

exists (a::17).
split; try (intros b s’; inversion s’); firstorder.

(* unloading the recursion. *)
S : {1’ : list A |
sorted 1’ /\ (forall b, sorted (b::1) -> ...)

{1’ : list A | sorted 1’}
destruct S as [1’ [s1l’ _]1]; exists 1’; exact sl’.
Proof completed.
Defined.

Yves Bertot A Coq tutorial for confirmed Proof system users

Prog.2

insert and sort: testing

Require Import Arith Omega.
Definition le_dec : forall x y : mat, {x <= y}+{y <= x}.
Defined.

Eval vm_compute in

let (1, _) := sort _ _ le_dec (1::7::3::2::nil).
=1 ::2 ::3 ::7 :: nil
list nat

Yves Bertot A Coq tutorial for confirmed Proof system users

Prog.2

Algorithmic content

Extraction insert.
(%% val insert : (’al -> ’al -> sumbool) ->
’al -> ’al list -> ’al list *x*)

let rec insert le_dec x = function
| Nil -> Cons (x, Nil)
| Cons (a, 10) ->
(match le_dec x a with
| Left -> Cons (x, (Coms (a, 10)))
| Right -> Cons (a, (insert le_dec x 10)))

Yves Bertot A Coq tutorial for confirmed Proof system users

General recursion

» The foundation : well-founded induction,

» Directly describable as structural recursion over accessibility,
viewed as an inductive proposition,

» Allow recursive calls only on predecessors for a well-founded
relation,
» Discipline enforced by typing,

» Promotes types as strong specifications.

Fix : forall (A : Type) (R : A -> A -> Prop),
well_founded R ->
forall P : A -> Type,
(forall x : A, (forally : A, Ry x ->Py) ->P x) —>
forall x : A, P x

Yves Bertot A Coq tutorial for confirmed Proof system users

Prog.2

The Function command

» Add support for various forms of terminating recursion,

» Uniform syntax for structural, well-founded, or measure-based
termination criteria,

» Induction principle (somehow: induction on the computation
tree),

» Avoids dependent types in definitions (write ML-like code),

» Less complete than the basic well-founded induction.

Yves Bertot A Coq tutorial for confirmed Proof system users

Prog.2

Example with Function

Function sum (x:Z) {measure Zabs_nat} : Z :=

if Z_le_dec x O then O else x + sum (x-1).
1 subgoal

forall (x : Z) (anonymous :

Z_le_dec x 0 =

“x <= 0),
right (x <= 0) anonymous ->
(Zabs_nat (x - 1) < Zabs_nat x)¥%nat

intros x xneg _; apply Zabs_nat_lt; omega.
Defined.

Yves Bertot A Coq tutorial for confirmed Proof system users

Function example

Lemma sum_p : forall x, 0 <= x -> 2x%sum x = x*(x+1).
2 subgoals

x : x <=0

0<=x >2%0=x=x* (x+ 1)
intros; assert (x = 0) by omega; subst x; auto.

x : " x<=0
IHz : 0 <= x - 1 —>
2% sum (x - 1) = (x-1) * (x-1+ 1)

0<=x->2x* (x+sum (x - 1)) =x *x (x + 1)

Yves Bertot A Coq tutorial for confirmed Proof system users

Function example

X : T x<=0

IHz : 0 <= x - 1 —>
2% sum (x - 1) = (x-1) * (x-1+ 1)

0<=x->2%* (x+sum (x - 1)) =x % (x +1)
intros;
replace (2x(x+sum(x-1))) with (2*x + 2*sum(x-1)) by ring;
rewrite IHz; [ring | omegal.
Proof completed.
Qed.

Yves Bertot A Coq tutorial for confirmed Proof system users

Next four slides were presented at the conference.

Yves Bertot A Coq tutorial for confirmed Proof system users

Co-induction

» A different form of recursion,

» Data is not necessarily finite,

» Recursion is allowed only if data is being produced,
» Computation is lazy.

CoInductive Stream (A:Type) : Type :=
Scons (a:A)(s:Stream A).

Implicit Arguments Scons [A].

Infix "::" := Scons (at level 60, right associativity).
CoFixpoint zeros : Stream nat := 0::zeros.
CoFixpoint nums (n:nat) : Stream nat := n::nums (n+1).

Yves Bertot A Coq tutorial for confirmed Proof system users

Lazy computation

Fixpoint explore (A:Type)(s:Stream A)(n:nat): A :=
match s, n with
a::_, 0 => a
| _::t, S p => explore _ t p
end.
Implicit Arguments explore [A].

Definition nats := nums O.
Time Eval vm_compute in explore nats 10000.
= 10000 : nat

Finished transaction in 10. secs (...)

Time Eval vm_compute in explore nats 10000.
= 10000 : nat

Finished transaction in 0. secs (...)

Yves Bertot A Coq tutorial for confirmed Proof system users

Corec.

Erastothene’s Sieve in 50 lines

(* Definitions of Stream, nums, take divides : 22 lines *)

Fixpoint bfilter (p:nat->bool)(n:nat) (s:Stream nat)
{struct n} : nat*Stream nat :=
match n with

0 => let (a, tl) := s in (a, tl)
| Sk =>

let (a, tl) := s in

if p a then (a,tl) else bfilter p k tl
end.

CoFixpoint filter (p:nat->bool) (k:nat)(s:Stream nat)
Stream nat :=
let (a,tl) := bfilter p k s in a::filter p a tl.

Yves Bertot A Coq tutorial for confirmed Proof system users

Corec.

Eratosthene’s sieve, continued

CoFixpoint sieve (s:Stream nat) : Stream nat :=
let (a,tl) := s in
a::sieve (filter (not_divides a) a tl).

Definition primes := sieve (nums 2).
Eval vm_compute in take 20 primes.
=2 ::3::5 07 211 2 13 12 17 19 1 23

0029 2 31 :: 37 :: 41 :: 43 :: 47 :: B3 :: B9
0 61 :: 67 :: 71 :: nil

Yves Bertot A Coq tutorial for confirmed Proof system users

Slides beyond this one were not presented at the conference.

Yves Bertot A Coq tutorial for confirmed Proof system users

Corec.

Co-Inductive predicates

» Predicates with “infinite proofs”,
» Same well-formedness criterion as co-recursive data,
» Proofs actually not more infinite than proofs by induction,

Yves Bertot A Coq tutorial for confirmed Proof system users

Corec.

Example of co-inductive predicates

CoInductive prime_spec : Stream nat -> Prop :=
cpl : forall a tl, prime a —-> prime_spec tl ->
prime_spec (a::tl).

CoInductive all_prime_spec (p:nat) : Stream nat -> Prop :=
cp2 : forall a tl, p < a -> prime a —>
(forall x, p < x < a -> “prime a) ->
all_prime_spec a tl ->
all_prime_spec p (a::tl).

CoInductive bisimilar (A:Type)
Stream A -> Stream A -> Prop :=
cb : forall a tll tl2, bisimilar tl1 t12 ->
bisimilar (a::tl1l) (a::tl2).

Yves Bertot A Coq tutorial for confirmed Proof system users

Reflexion
| 2
| 4
| 2
>
>

Yves Bertot A Coq tutorial for confirmed Proof system users

Define a function that computes inside the theorem prover,
Establish a theorem the results of the function,

Use the theorem to prove results,

Approach used inside Coq for ring equalities,

Our example : associativity.

refl.

Re-organizing binary trees

Require Import Arith.
Set Implicit Arguments.

Section f1.

Variables (A : Type) (op : A -> A -> A).
Hypothesis assoc : forall x y z, op x (op y z) = op (op x 1

Inductive bin : Type := L (v:A) | N (x y : bin).

Function f11 (x y : bin) struct x : bin :=
match x with
Lv=>N(Lwv)y
| N t1 t2 => f11 t1 (f11 t2 y)
end.

Yves Bertot A Coq tutorial for confirmed Proof system users

refl.

Re-organizing binary trees

Function f1 (x : bin) struct x : bin :=
match x with L v =>L v | N t1 t2 => f11 t1 (f1 t2) end.

Function it (t:bin) struct t : A :=
match t with
Lv=>v]|DNtlt2=>op (it t1) (it t2)
end.

Yves Bertot A Coq tutorial for confirmed Proof system users

refl.

Re-organizing binary trees (proofs)

Lemma fl1l_s : forall t1 t2,
it (£f11 t1 t2) = op (it t1) (it t2).
intros t1 t2; functional induction (f11 t1 t2).
it (N (L v) y)
auto.
IHb : it (f11 t2 y) = op (it t2) (it y)
IHbO : it (f11 t1 (f11 t2 y)) =
op (it t1) (it (£11 t2 y))

op (it (L v)) (it y)

it (11 t1 (f11 t2 y)) = op (it (N t1 t2)) (it y)
simpl; rewrite IHbO, IHb.
auto.
Qed.

Yves Bertot A Coq tutorial for confirmed Proof system users

refl.

Re-organizing binary trees (proofs)

Lemma fl_s : forall t, it (f1 t) = it t.
intros t; functional induction (fl1 t); auto.
rewrite fll_s, IHb; simpl; auto.

Qed.

Lemma f12 : forall t1 t2, it (f1 t1) = it (f1 t2) —>
it t1 = it t2.
intros tl t2; repeat rewrite fl_s; auto.

Qed.

End f1.

Yves Bertot A Coq tutorial for confirmed Proof system users

refl.

Transforming problem into data

Ltac mkt f v :=
match v with
| (f ?X1 ?7X2) =>
let rl := mkt f X1 with r2 := mkt f X2 in
constr: (N r1 r2)
| ?X => constr: (L X)
end.

Ltac abstract_plus := intros;
match goal with
|- ?X1 = 7X2 =>
let rl := mkt plus X1 with r2 := mkt plus X2 in
change (it plus rl = it plus r2)
end.

Yves Bertot A Coq tutorial for confirmed Proof system users

refl.
Example on a goal

Lemma

exl : forall x y, 1 +x+3 +y=(1+x)+ (3+7y).

abstract_plus.

it plus (N (W (N (L 1) (L x)) (L 3)) (L y)) =

it plus (N (W (L 1) (L x)) (N (L 3) (L y)))
apply f12 with (1 := plus_assoc).

it plus (1 (W (N (N (L 1) (L x)) (L 3)) (L y))) =

it plus ({1 (W (¥ (L 1) (L x)) (W (L 3) (L y))))
simpl f1.

it plus (N (L 1) (N (L x) (N (L 3) (L y)))) =

it plus (N (L 1) (N (L x) (N (L 3) (L y))))
reflexivity.
Qed.

Yves Bertot A Coq tutorial for confirmed Proof system users

Topics not covered

>
>
>
>
>
>

Yves Bertot A Coq tutorial for confirmed Proof system users

Subtyping: simulated with the help of coercions,
Polymorphism: simulated with implicit arguments,
Modularity,

Defined equality: the Setoid approach,

Type classes and canonical structures,

small-scale reflection.

	Introduction
	Programming
	Logic
	Prog.2
	Corec.
	refl.

